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Invariant Attacks — Round Constants
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Invariant Attacks

Main Idea: Invariant Subspaces
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Invariant Subspace Attacks [Lea+11] (CRYPTQO'11)

Let U CF2% c,d € U, and F : F — F2. Then U is an invariant subspace (1S) if and only if
F(U+c) = U+d and all round keys in UHc + d) are weak keys.
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Invariant Attacks
A Short History

Publication of IS attack, IS attack breaking Proving resistance for
breaking PRINTcipher Midori64 Invariant attacks

[Lea+11] I [LMR15] I [Guo+16] I [TLS16] I [Bei+17]
Generic Algorithm to find Invariant Set
ISes, breaking Robin, generalisation, breaking
iSCREAM, Zorro SCREAM, iSCREAM,
Midori64
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Invariant Attacks

Proving Resistance

Goal: Apply security argument from

C. Beierle, A. Canteaut, G. Leander, and Y. Rotella. “Proving Resistance Against Invariant
Attacks: How to Choose the Round Constants”. In: CRYPTO 2017, Part Il. 2017. doi:
10.1007/978-3-319-63715-0_22. iacr: 2017/463.

m Non-existence of invariants for both parts of the round function (S-box and linear layer)

Issues

m Other partitionings of the round function might allow invariants (Christof B. found examples)
m Not clear how to prove the general absence of invariant attacks (best we can currently prove)
m All known attacks exploit exactly this structure (splitting in S-box and linear layer)
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Invariant Attacks
Recap Security Argument (1)

m Invariants for the linear layer
L and round key addition have
to contain special linear
structures.

m Denote by ¢4, ...,c, the round
constant differences for
rounds with the same round
key.

m Then the linear structures of
any invariant have to contain
Wi(cq,...5C).
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Invariant Attacks M

Recap Security Argument (1)

Linear Structures

Let f : F) — IF,. Then its linear structures are

m Invariants for the linear layer LS :={a | f(x)+ f(x + a) is constant} .
L and round key addition have

to contain special linear

structures. The smallest L-invariant subspace

m Denote by ¢4, ...,c, the round Wi (cy,...,c,) is the smallest L-invariant subspace of 7
constant differences for containing all ¢;
rounds with the same round

) S Ve W (cq,...,¢): L(x) e Wi(cy,.-.,c,)

m Then the linear structures of
any invariant have to contain
Wi(cq,...5C).

~
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Invariant Attacks M

Recap Security Argument (1)

Linear Structures

Let f : F) — IF,. Then its linear structures are

m Invariants for the linear layer LS:={a| f(x)+ f(x +a) is constant} .
L and round key addition have

to contain special linear

structures. The smallest L-invariant subspace

m Denote by ¢4, ...,c, the round Wy (cq,...,c,.) is the smallest L-invariant subspace of
constant differences for containing all c;
rounds with the same round

) S Ve W (cq,...,¢): L(x) e Wi(cy,.-.,c,)

m Then the linear structures of
any invariant have to contain

Wi(ep,-..,c0). If Wi(cy,...,c.) =T, only trivial invariants for L and key
addition are possible (constant 0 and 1 function).

~
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Invariant Attacks
Recap Security Argument (Il)

Application to Clyde

m Find the important round constant differences:
(the differences where the same tweakey is added)
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Invariant Attacks
Recap Security Argument (Il)

Application to Clyde

m Find the important round constant differences: Set of RC differences D below
(the differences where the same tweakey is added) with |[D| = 20
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Invariant Attacks
Recap Security Argument (Il)

Application to Clyde

m Find the important round constant differences: Set of RC differences D below
(the differences where the same tweakey is added) with |[D| = 20
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Recap Security Argument (Il)

Application to Clyde

m Find the important round constant differences: Set of RC differences D below
(the differences where the same tweakey is added) with |[D| = 20
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Invariant Attacks
Recap Security Argument (Il)

Application to Clyde

m Find the important round constant differences: Set of RC differences D below
(the differences where the same tweakey is added) with |[D| = 20
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Invariant Attacks
Recap Security Argument (Il)

Application to Clyde

m Find the important round constant differences: Set of RC differences D below
(the differences where the same tweakey is added) with |[D| = 20
TK(0) TK(1) TK(2)
Y )\ ¥
x =@ (r|>D(r|>D>|r|>-P>~|r|>-D D = Dry() U Drg(1) U Dry(2) U Do
(1)-&~(1)-o~()-0o~()-¢
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@*?**é**?* Drxay = (W) + W(7)}
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Invariant Attacks

Application to Clyde

m Computing W, is efficiently doable (takes ~ 10 seconds on my laptop).
m For the round constants chosen for Clyde, dim W; (D) = 128 = n.

m Thus, we can apply:

Proposition 2 [Bei+17]

Suppose that the dimension of W; (D) is n. Then any invariant g is constant (and thus trivial).

m We conclude that we cannot find any non-trivial g for Clyde which is at the same time invariant
for the S-box layer and for the linear layer.
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Invariant Attacks

Improvable?

Bounding the dimension of W, [Bei+17, Theorem 1]

Given a linear layer L. Denote by Q; its invariant factors. Then

C15ee0sC EFY

t
max_dimW(cy,...,c) = ZdegQi .
i=1
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Invariant Attacks

Improvable?

Bounding the dimension of W, [Bei+17, Theorem 1]

Given a linear layer L. Denote by Q; its invariant factors. Then

t
max dimWL(cl,...,ct)=ZdegQi .
€F; =

C15ee0Ct

Application to Clyde

m Compute invariant factors of linear layer:
m This gives a lower bound on the number of rounds:
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Invariant Attacks

Improvable?

Bounding the dimension of W, [Bei+17, Theorem 1]

Given a linear layer L. Denote by Q; its invariant factors. Then

t
max dimWL(cl,...,ct)=ZdegQi .
€F; =

C15ee0Ct

Application to Clyde

m Compute invariant factors of linear layer: 4x(x32+1)
m This gives a lower bound on the number of rounds: 3 steps/6 rounds
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Invariant Attacks

Improvable?

Bounding the dimension of W, [Bei+17, Theorem 1]

Given a linear layer L. Denote by Q; its invariant factors. Then

C15ee0Ct

t
max dimWL(cl,...,ct)=ZdegQi .
€F; =

Application to Clyde

m Compute invariant factors of linear layer: 4x(x32+1)

m This gives a lower bound on the number of rounds: 3 steps/6 rounds

m 3 stps/6 rnds: dim Wy (cq,...,¢c4) = 96 m 5 stps/10 rnds: dim Wi (cq,...,c13) = 128
m 4 stps/8 rnds: dim Wy (cq,...,cg) = 128 m 6 stps/12 rnds: dim W (cq,...,Cy) = 128
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Subspace Trails

Probability 1 Truncated Differentials
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Subspace Trails

Main Idea: Subspace Trails

( )
U+a,
I
U+ta,
U
\ J/
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Subspace Trails

Main Idea: Subspace Trails

4 A
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Subspace Trails

Main Idea: Subspace Trails

Vs

Subspace Trail Cryptanalysis [GRR16] (FSE'16)

Let Uy,...,U, CF;, and F : F;, — 7. Then these form a subspace trail (ST), U, 5.5 U, iff

VaeUl:3beUl, : F(Usa) C Uy 4+b
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Computing Subspace Trails

Given a starting subspace U, we can effi-
ciently compute the corresponding longest
subspace trail.

Lemma

LetU 5V bea ST, Then forallu € U and
all x: F(x)+ F(x+u)eV.

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019 13



RUHR-UNIVERSITAT BOCHUM

Computing Subspace Trails

Given a starting subspace U, we can effi-
ciently compute the corresponding longest
subspace trail.

Lemma

LetU 5V bea ST, Then forallu € U and
all x: F(x)+ F(x+u)eV.

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019

Proof

13



RUHR-UNIVERSITAT BOCHUM

Computing Subspace Trails

Given a starting subspace U, we can effi-
ciently compute the corresponding longest
subspace trail.

Lemma

LetU 5V bea ST, Then forallu € U and
all x: F(x)+ F(x+u)eV.

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019

Proof

13



RUHR-UNIVERSITAT BOCHUM

Computing Subspace Trails

Given a starting subspace U, we can effi-
ciently compute the corresponding longest
subspace trail.

Lemma

LetU 5V bea ST, Then forallu € U and
all x: F(x)+ F(x+u)eV.

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019

Proof

13



RUHR-UNIVERSITAT BOCHUM

Computing Subspace Trails

Given a starting subspace U, we can effi-

ciently compute the corresponding longest REESS
subspace trail. (

Lemma

LetU 5V bea ST, Then forallu € U and
all x: F(x)+ F(x+u)eV.

Computing the subspace trail

m To compute the next subspace, we have to compute the image of the derivatives.
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Computing Subspace Trails
Algorithm

Compute Subspace Trails

Input: A nonlinear, bijective function F : F} — I, and a subspace U.
Output: The longest ST starting in U over F.

1 function Compute Trail(F, U)

2 if dim(U) = n then

3 return U

4 Ve

5 for u; basis vectors of U do

6 for enough x €3 IF7 do >e.g.n+ 20 x's are enough
7 VeVua, (F)(x) > AL(F)(x):=F(x)+F(x+a)
8 V « span(V)

9 return the subspace trail U — Compute Trail(F, V)

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019
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Subspace Trails M
Proving Resistance

Goal: Apply security argument from

G. Leander, C. Tezcan, and F. Wiemer. “Searching for Subspace Trails and Truncated
Differentials”. In: ToSC 2018.1 (2018). doi: 10.13154/tosc.v2018.i1.74-100.

m (Tight) upper bound on the length of any ST for an SPN construction

Why is the Compute Trail algorithm not enough?

m Exhaustively checking all possible starting points is to costly.
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Subspace Trails

How to bound the length of any subspace trail

_S_
0
_S_ a
U V >
ds 0
0
_S_
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How to bound the length of any subspace trail M

Subspace Trails

Compute the subspace trails for any starting point

15 0 Wi o €W, with
p— S — Wla Z(O"")O’a’()} ’0)

a S~~——

U V> =t

ds L 0

0 Complexity (Size of W)
1S5S For an S-box layer S : F§" — FA™ with k S-boxes, each n-bit:

Wl=k-(2"—1)
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Subspace Trails M

Algorithm

Generic Subspace Trail Search

Input: A linear layer matrix M : F2**™* and an S-box S : FI — FZ.
Output: A bound on the length of all STs over F = M o Sk,

1 function Generic Subspace Trail Length(M, S)

2 empty list L

3 for possible initial subspaces represented by w; , € W do > Overall k - (2" — 1) iterations
4 L.append(Compute Trail(S* o M, {w; ,})) > Sk denotes the S-box layer
5 return max {len(t) | t € L}

Overall Complexity

Algorithm  Compute Trail Generic Subspace Trail Length Overall Clyde Shadow
Complexity O(k%n?) O(k2™) O(k%n22m) 2% e
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Subspace Trails M
Results

Clyde Shadow

m Generic Subspace Trail Length Bound: m Generic Subspace Trail Length Bound:
2 (+1) Rounds 4 (+1) Rounds
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(Disclaimer)
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Division Property M

Main Idea: (Bit-based) Division Property

m Generalisation of Integral and Higher Order Differential attacks (Degree-based)
m Captures properties of bits in a set (e.g. combination of bits is balanced)
m For standard integral attacks: zero-sum, all or constant

m The Division Property allows to capture properties “in between” these
(even if they do not have such a nice description as e. g. the zero-sum)

Bit-based Division Property

Given X,K C IF7. X has Division Property (DP) Dy, if for allu <K : Zx = Zl_[x =0.

xeX i=1
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Division Property
Related Work

DP attack breaking DP based Cube attacks
full Misty Bit-based DP on stream ciphers

[Tod15b] [Tod15a] [BC16] [TM16] [Xia+16] [Tod+17]
[Wan+18]

Publication of DP attack Analysis of DP, S-box MILP based search of
properties to resist DP distinguishers
this attack
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Division Trails

Propagating (Bit-Based) Division Properties

copy : x — (x,x)

D2 PR xor: (x,y)—>x+y
p1 e | 700 if x =0 -
x D2 ifx=1 Dy ek
(0,1),(1,0) 0,K1 otky
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Division Trails

Propagating (Bit-Based) Division Properties

S-box S : F), — F3:

copy : x — (x,x) see [Xia+16, Algorithm 2],
2 0 o xor: (x,y)— x+ computes for all u € F?
1 copy D(O,O) ifx =0 (x.7) Y & 2
[ P - D2 5! Dr 5 e
Do Fx=1 (ko kr) ko+k; u Py

s.t.u—visvalid Vv eV.
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Division Trails

Propagating (Bit-Based) Division Properties

S-box S : F), — F3:

copy : x — (x,x) see [Xia+16, Algorithm 2],
2 e xor: (x,y)— x+ computes for all u € F?
1 copy D(O,O) ifx =0 (x.7) Y & 2
e : D2 5l pr 5, pr
D(o,1),(1,o) ifx=1 (Kko,k1) Ko+, - v

s.t.u—visvalid Vv eV.

Division Trail

Given a round function F : F} — 3 and K; C F,. Assume that

Vk; €K; : 3k;y; €Kipy 5.1 D 55 DR

kit

We call such a (ky, ky, . .., k) an r-round Division Trail (DT).
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Division Property M

Goal: Apply security argument from

Z. Xiang, W. Zhang, Z. Bao, and D. Lin. "Applying MILP Method to Searching Integral
Distinguishers Based on Division Property for 6 Lightweight Block Ciphers”. In:
ASIACRYPT 2016, Part I. 2016. doi: 10.1007/978-3-662-53887-6_24. iacr:
2016/857.

Number of rounds for which a division property/integral distinguisher exists.

Approach (similiar to Subspace Trails)

m Pick starting DPs in a way that covers all possibilities
m Model division trail propagations as MILP
m Find solutions for this over increasing number of rounds
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Division Property
MILP model

Mixed Integer Linear Programs

Typical description of a MILP

Objective max/min cTx
linear inequalities subjectto Ax <b

m A, b, c known coefficients
m x unknown variables (R, Z, or {0, 1})

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019
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Division Property M
MILP model

Mixed Integer Linear Programs Applying MILPs to find Division Properties

Typical description of a MILP Goal: Model Division Property as a MILP
Objective max/min  c¢'x e nee(.j: . '
linear inequalities subjectto Ax <b m Objective function
m Starting DP
m A, b, c known coefficients m Propagation Rules
m x unknown variables (R, Z, or {0, 1}) m Stopping Rule
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Division Property
MILP model

Mixed Integer Linear Programs Applying MILPs to find Division Properties

Typical description of a MILP

Objective max/min cTx
linear inequalities subjectto Ax <b

m A, b, c known coefficients
m x unknown variables (R, Z, or {0, 1})

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019
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We need:

m Objective function

m Starting DP

m Propagation Rules

m Stopping Rule
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Division Property
Modeling Propagation Rules: copy

Based on eprint's 2016/392, 2016/811, and 2016/1101

Propagation Rule

copy : x — (x, x)

2 A —
D1 {D(o,o) if x=0
X 2 g —
Dionao Hfx=1

Valid Transitions

copy

©0) = (0,0)
(1) F(0,1)
1= q,0)

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019
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Division Property

Modeling Propagation Rules: copy M

Based on eprint's 2016/392, 2016/811, and 2016/1101

Propagation Rule

copy : x — (x, x)

. MILP Model
DL D(ZO 9 if x=0
& 1)(20 o x=1 m Given division trail (x) (y,z)
m Propagation represented by the (in)equality

Valid Transitions x—y—z=0
o] xX,y,2€1{0,1

©0) % oY (0,0) y {0,1}

1) (0,1)

13 (1,0)
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Division Property

Modeling Propagation Rules: xor

Based on eprint's 2016/392, 2016/811, and 2016/1101

Propagation Rule

xor: (x,y)—»>x+y

5 Xor 1
—
D(ko,’ﬁ) Dk0+k1

Valid Transitions

(0,0)*> (0)
(1,003 (1)

Xor

(0,1) = (1)
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Division Property

Modeling Propagation Rules: xor M

Based on eprint's 2016/392, 2016/811, and 2016/1101

Propagation Rule

xor:(x,y)—>x+y MILP Model
D(zko,kl) = Dll0+k1 m Given division trail (x, y) = (2)
m Propagation represented by the (in)equality:
x+y—2=0
(0,0) = (0) x,y,2z €{0,1}

(1,003 (1)

Xor

(0,1) = (1)
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Division Property
Modeling Propagation Rules: S-box

Based on approach by Sun et al. [Sun+14] for differential case

Propagation Rule
S-box S : F), — FFJ:
see [Xia+16, Algorithm 2],
computes for allu € F

S
n n
Du _)DV

Valid Transitions
s
u—v

forv, eV
S
u—v
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Division Property M
Modeling Propagation Rules: S-box

Based on approach by Sun et al. [Sun+14] for differential case

Propagation Rule
S-box S : F), — FFJ:
see [Xia+16, Algorithm 2],
computes for all u € F} MILP Model

s
n n
D, - Dy

m Interpret set of all valid (u,v) € IE‘%” as polyhedron
m Get inequalities from its H-representation

: - m Choose inequalities for model by
Valid Transitions m Greedy Approach [Sun+14]
" i 7 m MILP Approach [ST17] (seems to be slower)
forv, eV

S
u—v
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Division Property
MILP model

Mixed Integer Linear Programs Applying MILPs to find Division Properties

Typical description of a MILP

Objective max/min cTx
linear inequalities subjectto Ax <b

m A, b, c known coefficients
m x unknown variables (R, Z, or {0, 1})

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019

Goal: Model Division Property as a MILP
We need:

m Objective function

m Starting DP

m Propagation Rules

m Stopping Rule
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Goal: Model Division Property as a MILP

We need:
m Objective function
m Starting DP
m Propagation Rules
m Stopping Rule
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Division Property M
Objective, Start, Stop

What are we looking for?

m Unit vectors in output division property correspond to unbalanced bits.
m We have to exclude these from our MILP model.

m When minimising the sum over the output variables, we find these unit vectors first.

Objective

minimise xj +x] + - + X,
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Division Property M
Objective, Start, Stop

Possible Starting DPs

m Similar to subspace trail approach, we need to reduce the starting DPs needed to be checked.

m [SWW17, Proposition 2] showed that given a first initial DP k, for any initial DP k; which is
element-wise smaller than k, the following holds:
If DP starting in k, does not have a DP after r rounds, the same holds for DP starting in k;.

m This reduces the initial DPs we have to check to n for an n-bit cipher.
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Division Property M
Objective, Start, Stop

Possible Starting DPs

m Similar to subspace trail approach, we need to reduce the starting DPs needed to be checked.

m [SWW17, Proposition 2] showed that given a first initial DP k, for any initial DP k; which is
element-wise smaller than k, the following holds:
If DP starting in k, does not have a DP after r rounds, the same holds for DP starting in k;.

m This reduces the initial DPs we have to check to n for an n-bit cipher.

Initial DPs

All k € F, with hamming weight n — 1 are possible initial DPs
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Division Property
Objective, Start, Stop

Model Stopping Rule
Input: A Division Property MILP model M
Output: A distinguisher exists or not

1 function DP Distinguisher Search(M)
2 while M has feasible solution do
3 Solve M

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019

Stopping Rule
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Division Property
Objective, Start, Stop

Model Stopping Rule

Input: A Division Property MILP model M
Output: A distinguisher exists or not

1 function DP Distinguisher Search(M)
2 while M has feasible solution do
Solve M
if objective value =1 then

Let solution =¢;

Add constraint x| =0 to M

(o200 &) BN S @b)

Friedrich Wiemer | Cryptanalysis of Clyde and Shadow | July 3rd, 2019

Stopping Rule

m Unit vectors in output division
property correspond to
unbalanced bits.

m We have to exclude these from our
MILP model.
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Division Property M
Objective, Start, Stop

Model Stopping Rule

Input: A Division Property MILP model M Stopping Rule
Output: A distinguisher exists or not

m Unit vectors in output division
1 function DP Distinguisher Search(M) property Corrgspond to
2 while M has feasible solution do unbalanced bits.
3 Solve M m We have to exclude these from our
4 if objective value =1 then MILP model.
g Let solution = ¢; . m If no more unit vectors where
: -l Bl =i found, but MILP still has feasible
7
8
9

el o solution, a distinguisher exists.
return Found distinguisher

return No distinguisher exists
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Division Property
MILP model

Mixed Integer Linear Programs Applying MILPs to find Division Properties

Typical description of a MILP

Objective max/min cTx
linear inequalities subjectto Ax <b

m A, b, c known coefficients
m x unknown variables (R, Z, or {0, 1})
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Goal: Model Division Property as a MILP

We need:
m Objective function
m Starting DP
m Propagation Rules
m Stopping Rule
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Division Property M
MILP model

Mixed Integer Linear Programs Applying MILPs to find Division Properties

Typical description of a MILP Goal: Model Division Property as a MILP
Objective max/min  c¢'x e ”eeq: . .
linear inequalities subjectto Ax < b m Objective function
m Starting DP
m A, b, c known coefficients m Propagation Rules
m x unknown variables (R, Z, or {0, 1}) m Stopping Rule

Similar approach

Using MILPs to find single differential trails and to estimate differentials basically same approach
We can now model the DP search for Clyde.
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Division Property

Results

Division Property distinguisher for Clyde

m 8 Rounds
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Conclusion

Thanks for your attention!

Future Work/Cryptanalysis

m Cryptagraph [HV18]
m Post cryptanalysis results on mailinglist?
m Eprint Write-Up?

pfasante.github.io/talk/spook_cryptanalysis
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