BISON
Instantiating the Whitened Swap-Or-Not Construction
September 6th, 2018

Horst Görtz Institut für IT Sicherheit
Ruhr-Universität Bochum
Virginie Lallemand, Gregor Leander, Patrick Neumann, and Friedrich Wiemer
Encrypt plaintext in blocks p_i of n bits, under a key of n bits:

$p_0 \in \{0, 1\}^n$

$k \in \{0, 1\}^n$

$c_0 \in \{0, 1\}^n$

$p_1 \in \{0, 1\}^n$

$k \in \{0, 1\}^n$

$c_1 \in \{0, 1\}^n$
Encrypt plaintext in blocks p_i of n bits under a key of n bits:

$$\text{Enc}_{k_i} p_i \in \{0, 1\}^n$$

for $i = 0, 1, 2, 3$.
Overview round, iterated r times

The WSN construction

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Whitened Swap-Or-Not round function

$$x, k \in \{0, 1\}^n \quad \text{and} \quad f_k : \{0, 1\}^n \to \{0, 1\}$$

$$y = \begin{cases}
 x + k & \text{if } f_k(x) = 1 \\
 x & \text{if } f_k(x) = 0
\end{cases}$$
The WSN construction

Overview round, iterated r times

Whitened Swap-Or-Not round function

$x, k \in \{0, 1\}^n$ and $f_k : \{0, 1\}^n \rightarrow \{0, 1\}$

\[
y = \begin{cases}
 x + k & \text{if } f_k(x) = 1 \\
 x & \text{if } f_k(x) = 0
\end{cases}
\]

Properties of f_k (needed for decryption)

$f_k(x) = f_k(x + k)$

Security Proposition (informal)

The WSN construction with $r = \Theta(n)$ rounds is Full Domain secure.
The WSN construction

Encryption

Input

\(x \)
The WSN construction

Encryption:

\[E^k(x) = x + \sum_{i=1}^{\lambda} \lambda_i x_i = y \]
The WSN construction

Encryption:

\[E_k(x) = x + \sum_{i=1}^{\lambda} \lambda_i k_i = y \]
The WSN construction

Encryption

Encryption: \(E_k(x) := x + \sum_{i=1}^{r} \lambda_i k_i = y \)
An Implementation

Theoretical vs. practical constructions

Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | September 6th, 2018
An Implementation

Theoretical vs. practical constructions

Construction

- $f_k(x) := ?$
- Key schedule?
- $\mathcal{O}(n)$ rounds?
Observation

- The ciphertext is the plaintext plus a subset of the round keys:
 \[y = x + \sum_{i=1}^{r} \lambda_i k_i \]

- For pairs \(x_i, y_i \): span \(\{x_i + y_i\} \subseteq \text{span} \{k_j\} \).
Observation

- The ciphertext is the plaintext plus a subset of the round keys:
\[y = x + \sum_{i=1}^{r} \lambda_i k_i \]

- For pairs \(x_i, y_i \): \(\text{span} \{ x_i + y_i \} \subseteq \text{span} \{ k_j \} \).

Distinguishing Attack for \(r < n \) rounds

There is an \(u \in \mathbb{F}_2^n \setminus \{0\} \), s.t. \(\langle u, x \rangle = \langle u, y \rangle \) holds always:

\[
\langle u, y \rangle = \langle u, x + \sum \lambda_i k_i \rangle \\
= \langle u, x \rangle + \langle u, \sum \lambda_i k_i \rangle = \langle u, x \rangle + 0
\]

for all \(u \in \text{span} \{ k_1, \ldots, k_r \}^\perp \neq \{0\} \)
Generic Analysis
On the number of rounds

Observation

- The ciphertext is the plaintext plus a subset of the round keys:
 \[y = x + \sum_{i=1}^{r} \lambda_i k_i \]

- For pairs \(x_i, y_i \): \(\text{span} \{ x_i + y_i \} \subseteq \text{span} \{ k_j \} \).

Distinguishing Attack for \(r < n \) rounds

There is an \(u \in \mathbb{F}_2^n \setminus \{ 0 \} \), s. t. \(\langle u, x \rangle = \langle u, y \rangle \) holds always:

\[
\langle u, y \rangle = \langle u, x + \sum \lambda_i k_i \rangle \\
= \langle u, x \rangle + \langle u, \sum \lambda_i k_i \rangle = \langle u, x \rangle + 0
\]

for all \(u \in \text{span} \{ k_1, \ldots, k_r \} \perp \neq \{ 0 \} \)

Rationale 1

Any instance must iterate at least \(n \) rounds; any set of \(n \) consecutive keys should be linearly indp.
A bit out of the blue sky, but:

Rationale 2

For any instance, f_k has to depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.
Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indep.

Rationale 2

For any instance, f_k has to depend on all bits, and for any $\delta \in \mathbb{F}_2^n$:

$$\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}.$$

Generic properties of Bent whitened Swap Or Not

- At least n iterations of the round function
- Consecutive round keys linearly independent
- The round function depends on all bits
- $\forall \delta : \Pr[f_k(x) = f_k(x + \delta)] = \frac{1}{2}$ (bent)
A genus of the WSN family: BISON

Rationale 1
Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Rationale 2
For any instance, f_k has to depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.

Generic properties of Bent whitened Swap Or Not
- At least n iterations of the round function
- Consecutive round keys linearly independent
- The round function depends on all bits
- $\forall \delta : \Pr[f_k(x) = f_k(x + \delta)] = \frac{1}{2}$ (bent)

Rational 1 & 2: WSN is slow in practice!

But what about Differential Cryptanalysis?
Differential Cryptanalysis

Primer

\[\begin{align*}
 &p \\
 &\oplus \\
 &c \\
&\oplus \\
 &c' \\
 &\oplus \\
 &\beta
\end{align*} \]

\[= \alpha \]

Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | September 6th, 2018
Differential Cryptanalysis
Primer

Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | September 6th, 2018
Differential Cryptanalysis

Primer

Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | September 6th, 2018
Proposition

For one round of BISON the probabilities are:

\[
\Pr[\alpha \rightarrow \beta] = \begin{cases}
1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0 \\
\frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\} \\
0 & \text{else}
\end{cases}
\]
Proposition

For one round of BISON the probabilities are:

\[
\Pr[\alpha \rightarrow \beta] = \begin{cases}
1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0 \\
\frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\} \\
0 & \text{else}
\end{cases}
\]

Possible differences

\[
x + f_k(x) \cdot k \\
\oplus x + \alpha + f_k(x + \alpha) \cdot k \\
= \alpha + (f_k(x) + f_k(x + \alpha)) \cdot k
\]
Differential Cryptanalysis
One round

Proposition
For one round of BISON the probabilities are:

\[
Pr[\alpha \rightarrow \beta] = \begin{cases}
1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0 \\
\frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\} \\
0 & \text{else}
\end{cases}
\]

Possible differences

\[
x + f_k(x) \cdot k
\]

\[
\oplus x + \alpha + f_k(x + \alpha) \cdot k
= \alpha + (f_k(x) + f_k(x + \alpha)) \cdot k
\]

Remember

\[
Pr[f_k(x) = f_k(x + \alpha)] = \frac{1}{2}
\]
Example differences over $r = 3$ rounds:
Example differences over $r = 3$ rounds:

For fixed α and β there is only one path!
A concrete species
Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Design Decisions

- Choose number of rounds as $2 \cdot n$
- Round keys derived from the state of LFSRs
- Add round constants c_i to w_i round keys

Implications

- Clocking an LFSR is cheap
- For an LFSR with irreducible feedback polynomial of degree n, every n consecutive states are linearly independent
- Round constants avoid structural weaknesses
Addressing Rationale 2
The Round Function

Rationale 2
For any instance, the f_k should depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.

Design Decisions
- Choose $f_k : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ s.t.
 $$\delta \in \mathbb{F}_2^n : \Pr[f_k(x) = f_k(x + \delta)] = \frac{1}{2},$$
 that is, f_k is a bent function.
- Choose the simplest bent function known:
 $$f_k(x, y) := \langle x, y \rangle$$

Implications
- Bent functions well studied
- Bent functions only exists for even n
- Instance not possible for every block length n
Conclusion/Questions

Thank you for your attention!

BISON

- A first instance of the WSN construction
- Good results for differential cryptanalysis

Open Problems

- Construction for linear cryptanalysis
- Further analysis: division properties

Thank you!

Questions?
Details
BISON’s round function

For round keys \(k_i \in \mathbb{F}_2^n \) and \(w_i \in \mathbb{F}_2^{n-1} \) the round function computes

\[
R_{k_i, w_i}(x) := x + f_{b(i)}(w_i + \Phi_{k_i}(x)) \cdot k_i.
\]

where

- \(\Phi_{k_i} \) and \(f_{b(i)} \) are defined as

\[
\Phi_k(x) : \mathbb{F}_2^n \to \mathbb{F}_2^{n-1}
\]
\[
\Phi_k(x) := (x + x[i(k)] \cdot k[j])_{1 \leq j \leq n}^{j \neq i(k)}
\]

\[
f_{b(i)} : \mathbb{F}_2^{n-1} \times \mathbb{F}_2^{n-1} \to \mathbb{F}_2
\]
\[
f_{b(i)}(x, y) := \langle x, y \rangle + b(i),
\]

- and \(b(i) \) is 0 if \(i \leq \frac{r}{2} \) and 1 else.
BISON’s key schedule

Given
- primitive $p_k, p_w \in \mathbb{F}_2[x]$ with degrees $n, n - 1$ and companion matrices C_k, C_w.
- master key $K = (k, w) \in \left(\mathbb{F}_2^n \times \mathbb{F}_2^{n-1} \right) \setminus \{0, 0\}$

The ith round keys are computed by

$$KS_i : \mathbb{F}_2^n \times \mathbb{F}_2^{n-1} \to \mathbb{F}_2^n \times \mathbb{F}_2^{n-1}$$

$$KS_i(k, w) := (k_i, c_i + w_i)$$

where

$$k_i = (C_k)^i k, \quad c_i = (C_w)^{-i} e_1, \quad w_i = (C_w)^i w.$$
Further Cryptanalysis

Linear Cryptanalysis
For $r \geq n$ rounds, the correlation of any non-trivial linear trail for BISON is upper bounded by $2^{-\frac{n+1}{2}}$.

Invariant Attacks
For $r \geq n$ rounds, neither invariant subspaces nor nonlinear invariant attacks do exist for BISON.

Zero Correlation
For $r > 2n - 2$ rounds, BISON does not exhibit any zero correlation linear hulls.

Impossible Differentials
For $r > n$ rounds, there are no impossible differentials for BISON.