BISON

Instantiating the Whitened Swap-Or-Not Construction

November 14th, 2018

FluxFingers

Workgroup Symmetric Cryptography, Ruhr University Bochum
Virginie Lallemand, Gregor Leander, Patrick Neumann, and Friedrich Wiemer

Block Ciphers

Encrypt plaintext in blocks p_{i} of n bits, under a key of n bits:

RUHR-UNIVERSITÄT BOCHUM

Block Ciphers

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Overview round, iterated r times

Whitened Swap-Or-Not round function

$$
\begin{gathered}
x, k \in\{0,1\}^{n} \text { and } f_{k}:\{0,1\}^{n} \rightarrow\{0,1\} \\
y= \begin{cases}x+k & \text { if } f_{k}(x)=1 \\
x & \text { if } f_{k}(x)=0\end{cases}
\end{gathered}
$$

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Overview round, iterated r times

Properties of f_{k} (needed for decryption)

$$
f_{k}(x)=f_{k}(x+k)
$$

Whitened Swap-Or-Not round function

$$
\begin{gathered}
x, k \in\{0,1\}^{n} \text { and } f_{k}:\{0,1\}^{n} \rightarrow\{0,1\} \\
y= \begin{cases}x+k & \text { if } f_{k}(x)=1 \\
x & \text { if } f_{k}(x)=0\end{cases}
\end{gathered}
$$

Security Proposition (informal)

The WSN construction with $r=\mathscr{O}(n)$ rounds is Full Domain secure.

The WSN construction

Input
x

The WSN construction

Encryption

Input

The WSN construction

Input

The WSN construction

Encryption

An Implementation

An Implementation

Construction

- $f_{k}(x):=$?
- Key schedule?
- $O(n)$ rounds?

Theoretical vs. practical constructions

Generic Analysis

Observation

- The ciphertext is the plaintext plus a subset of the round keys:

$$
y=x+\sum_{i=1}^{r} \lambda_{i} k_{i}
$$

- For pairs $x_{i}, y_{i}: \operatorname{span}\left\{x_{i}+y_{i}\right\} \subseteq \operatorname{span}\left\{k_{j}\right\}$.

Generic Analysis

RUB

Observation

- The ciphertext is the plaintext plus a subset of the round keys:

$$
y=x+\sum_{i=1}^{r} \lambda_{i} k_{i}
$$

- For pairs $x_{i}, y_{i}: \operatorname{span}\left\{x_{i}+y_{i}\right\} \subseteq \operatorname{span}\left\{k_{j}\right\}$.

Distinguishing Attack for $r<n$ rounds

There is an $u \in \mathbb{F}_{2}^{n} \backslash\{0\}$, s. t. $\langle u, x\rangle=\langle u, y\rangle$ holds always:

$$
\begin{aligned}
& \langle u, y\rangle=\left\langle u, x+\sum \lambda_{i} k_{i}\right\rangle \\
= & \langle u, x\rangle+\left\langle u, \sum \lambda_{i} k_{i}\right\rangle=\langle u, x\rangle+0
\end{aligned}
$$

for all $u \in \operatorname{span}\left\{k_{1}, \ldots, k_{r}\right\}^{\perp} \neq\{0\}$

Observation

- The ciphertext is the plaintext plus a subset of the round keys:

$$
y=x+\sum_{i=1}^{r} \lambda_{i} k_{i}
$$

- For pairs $x_{i}, y_{i}: \operatorname{span}\left\{x_{i}+y_{i}\right\} \subseteq \operatorname{span}\left\{k_{j}\right\}$.

Distinguishing Attack for $r<n$ rounds

There is an $u \in \mathbb{F}_{2}^{n} \backslash\{0\}$, s. t. $\langle u, x\rangle=\langle u, y\rangle$ holds always:

$$
\begin{gathered}
\langle u, y\rangle=\left\langle u, x+\sum \lambda_{i} k_{i}\right\rangle \\
=\langle u, x\rangle+\left\langle u, \sum \lambda_{i} k_{i}\right\rangle=\langle u, x\rangle+0
\end{gathered}
$$

for all $u \in \operatorname{span}\left\{k_{1}, \ldots, k_{r}\right\}^{\perp} \neq\{0\}$

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Generic Analysis

On the Boolean functions f

A bit out of the blue sky, but:

Rationale 2

For any instance, f_{k} has to depend on all bits, and for any $\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right] \approx \frac{1}{2}$.

A genus of the WSN family: BISON

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Rationale 2

For any instance, f_{k} has to depend on all bits, and for any $\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right] \approx \frac{1}{2}$.

Generic properties of Bent whltened Swap Or Not

- At least n iterations of the round function
- The round function depends on all bits

■ Consecutive round keys linearly independent

- $\forall \delta: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right]=\frac{1}{2}$ (bent)

A genus of the WSN family: BISON

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Rationale 2

For any instance, f_{k} has to depend on all bits, and for any $\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right] \approx \frac{1}{2}$.

Generic properties of Bent whltened Swap Or Not

- At least n iterations of the round function
- Consecutive round keys linearly independent

Rational 1 \& 2: WSN is slow in practice!

- The round function depends on all bits
- $\forall \delta: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right]=\frac{1}{2}$ (bent)

But what about Differential Cryptanalysis?

Differential Cryptanalysis

RUHR-UNIVERSITÄT BOCHUM

Differential Cryptanalysis

RUHR-UNIVERSITÄT BOCHUM

Differential Cryptanalysis

Differential Cryptanalysis

Proposition

For one round of BISON the probabilities are:

$$
\operatorname{Pr}[\alpha \rightarrow \beta]= \begin{cases}1 & \text { if } \alpha=\beta=k \text { or } \alpha=\beta=0 \\ \frac{1}{2} & \text { else if } \beta \in\{\alpha, \alpha+k\} \\ 0 & \text { else }\end{cases}
$$

Differential Cryptanalysis

Possible differences

Proposition

For one round of BISON the probabilities are:

$$
\operatorname{Pr}[\alpha \rightarrow \beta]= \begin{cases}1 & \text { if } \alpha=\beta=k \text { or } \alpha=\beta=0 \\ \frac{1}{2} & \text { else if } \beta \in\{\alpha, \alpha+k\} \\ 0 & \text { else }\end{cases}
$$

$$
\begin{aligned}
& \quad x \quad+f_{k}(x) \quad \cdot k \\
& \oplus x+\alpha \quad+f_{k}(x+\alpha) \cdot k \\
& =\quad \alpha+\left(f_{k}(x)+f_{k}(x+\alpha)\right) \cdot k
\end{aligned}
$$

Differential Cryptanalysis

Possible differences

Proposition

For one round of BISON the probabilities are:

$$
\operatorname{Pr}[\alpha \rightarrow \beta]= \begin{cases}1 & \text { if } \alpha=\beta=k \text { or } \alpha=\beta=0 \\ \frac{1}{2} & \text { else if } \beta \in\{\alpha, \alpha+k\} \\ 0 & \text { else }\end{cases}
$$

$$
\begin{aligned}
& \quad x \quad+f_{k}(x) \quad \cdot k \\
& \oplus x+\alpha \quad+f_{k}(x+\alpha) \cdot k \\
& =\quad \alpha+\left(f_{k}(x)+f_{k}(x+\alpha)\right) \cdot k
\end{aligned}
$$

Remember

$$
\operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\alpha)\right]=\frac{1}{2}
$$

RUHR-UNIVERSITÄT BOCHUM

Differential Cryptanalysis
 More rounds

Example differences over $r=3$ rounds:

Differential Cryptanalysis

More rounds

Example differences over $r=3$ rounds:

For fixed α and β there is only one path!

RUHR-UNIVERSITÄT BOCHUM

BISON

Addressing Rationale 1

RUB

The Key Schedule

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Design Decisions

- Choose number of rounds as $3 \cdot n$
- Round keys derived from the state of LFSRs
- Add round constants to round keys

Implications

- Clocking an LFSR is cheap

■ For an LFSR with irreducible feedback polynomial of degree n, every n consecutive states are linearly independent

- Round constants avoid structural weaknesses

Addressing Rationale 2

Rationale 2

For any instance, the f_{k} should depend on all bits, and for any $\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right] \approx \frac{1}{2}$.

Design Decisions

■ Choose $f_{k}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ s. t.

$$
\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right]=\frac{1}{2}
$$

that is, f_{k} is a bent function.

- Choose the simplest bent function known:

$$
f_{k}(x, y):=\langle x, y\rangle
$$

Implications

- Bent functions are well studied
- Bent functions only exist for even n
- Instance not possible for every block length n

Details

BISON

BISON's round function

For round keys $k_{i} \in \mathbb{F}_{2}^{n}$ and $w_{i} \in \mathbb{F}_{2}^{n-1}$ the round function computes

$$
R_{k_{i}, w_{i}}(x):=x+f_{b(i)}\left(w_{i}+\Phi_{k_{i}}(x)\right) \cdot k_{i} .
$$

where

- $\Phi_{k_{i}}$ and $f_{b(i)}$ are defined as

$$
\begin{array}{rlrl}
\Phi_{k}(x): \mathbb{F}_{2}^{n} & \rightarrow \mathbb{F}_{2}^{n-1} & f_{b(i)}: \mathbb{F}_{2}^{\frac{n-1}{2}} \times \mathbb{F}_{2}^{\frac{n-1}{2}} & \rightarrow \mathbb{F}_{2} \\
\Phi_{k}(x): & =(x+x[i(k)] \cdot k)[j]_{\substack{1<j<n \\
j \neq i(k)}} & f_{b(i)}(x, y):=\langle x, y\rangle+b(i),
\end{array}
$$

- and $b(i)$ is 0 if $i \leqslant \frac{r}{2}$ and 1 else.

BISON

BISON's round function

For round keys $k_{i} \in \mathbb{F}_{2}^{n}$ and $w_{i} \in \mathbb{F}_{2}^{n-1}$ the round function computes

$$
R_{k_{i}, w_{i}}(x):=x+f_{b(i)}\left(w_{i}+\Phi_{k_{i}}(x)\right) \cdot k_{i} .
$$

where

- $\Phi_{k_{i}}$ and $f_{b(i)}$ are defined as

$$
\begin{aligned}
& \Phi_{k}(x): \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n-1} \\
& \Phi_{k}(x):=(x+x[i(k)] \cdot k)[j]_{\substack{1 \leq j \leq n \\
j \neq i(k)}} \\
& f_{b(i)}: \mathbb{F}_{2}^{\frac{n-1}{2}} \times \mathbb{F}_{2}^{\frac{n-1}{2}} \rightarrow \mathbb{F}_{2} \\
& f_{b(i)}(x, y):=\langle x, y\rangle+b(i),
\end{aligned}
$$

- and $b(i)$ is 0 if $i \leqslant \frac{r}{2}$ and 1 else.

$$
\Phi_{k} \text { basically ensures } f_{k}(x)=f_{k}(x+k) \text { (the property we need for decryption). }
$$

BISON

Key Schedule

BISON's key schedule

Given

- primitive $p_{k}, p_{w} \in \mathbb{F}_{2}[x]$ with degrees $n, n-1$ and companion matrices C_{k}, C_{w}.
- master key $K=(k, w) \in\left(\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n-1}\right) \backslash\{0,0\}$

The i th round keys are computed by

$$
\begin{aligned}
& \mathrm{KS}_{i}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n-1} \rightarrow \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n-1} \\
& \mathrm{KS}_{i}(k, w):
\end{aligned}
$$

where

$$
k_{i}=\left(C_{k}\right)^{i} k, \quad c_{i}=\left(C_{w}\right)^{-i} e_{1}, \quad w_{i}=\left(C_{w}\right)^{i} w .
$$

Further Cryptanalysis

Linear Cryptanalysis

For $r \geqslant n$ rounds, the correlation of any non-trivial linear trail for BISON is upper bounded by $2^{-\frac{n+1}{2}}$.

Zero Correlation
For $r>2 n-2$ rounds, BISON does not exhibit any zero correlation linear hulls.

Invariant Attacks

For $r \geqslant n$ rounds, neither invariant subspaces nor nonlinear invariant attacks do exist for BISON.

Impossible Differentials

For $r>n$ rounds, there are no impossible differentials for BISON.

Conclusion/Questions

BISON

- A first instance of the WSN construction
- Good results for differential cryptanalysis

Open Problems

- Construction for linear cryptanalysis

Conclusion/Questions

BISON

- A first instance of the WSN construction
- Good results for differential cryptanalysis

Open Problems

Conclusion/Questions

BISON

- A first instance of the WSN construction
- Good results for differential cryptanalysis

Open Problems

- Construction for linear cryptanalysis

