The SMEP Attack

Friedrich Wiemer
Robert Bosch GmbH
XC-CE/ECST

July 29t 2025

Offentlich C-SCO

———

AUTO-ISAC
Automotive Information Sharing and Analysis Center

:(@)iNextCarNet BOSCH

I~ fa:NeiCarel

The SMEP Attack AUTO-ISAC "I
RSA

Public key e, n =pq
d

with x*(e-d) mod n = x

Private key

Signing of m s=m*dmodn
Verification of s m =?=s”e mod n
Encryption of m c =m”e modn
Decryption of ¢ m = c¢*d mod n

Promise: its not getting worse &

Offentlich C-SCO | XC-CE/ECS1 | 09.07.2025
abar BOSCH

. @ NextCarNet

The SMEP Attack AUTO-ISAC
EE Architecture, Gateways or Zone Controllers and Switches

é}) = |n-vehicle network (IVN) connected by

7, G — Central Gateway

— Zone Controllers & Vehicle Computers

Zone
- - Controller - Central Gateway
C] S = . "n,

0 0
o &

Zone Controller
Vehicle-centralized

Central Gateway 2Mbit Packet Memary

K
//l
+ 4K MAC Addresses
Domain- - 1 512 Entry TCAM

. . (Ingress & Egres:
centralized Automotive

ar tcl
[/, Switch
274
B N
. U U
// Brlghtlane o o - RGMIV 100-T1 2.5 RGMIV
O O O : [E[e =] =
C] C] Embedded
ECU I I

Offentlich C-SCO | XC-CE/ECS1 | 09.07.2025
0 o BOSCH

The SMEP Attack

Supplier Mgmt: Switch Evaluation

= As part of pre-development:
analyze and evaluate switch vendors

= Set of topics that we discuss with vendor
= Discussions done with several switch vendors

Offentlich C-SCO | XC-CE/ECS1 | 09.07.2025

(S

Wt~ &L g

1
12
13
14

16

17
18
19
20
21
22
23
24

26
27

28
29
30
31

32
23

1D

AUTO-I sA}: = JE NextCarNet

Automotive Information Sharing and Analysis Center

B =
- |Type |~ Question ~ | Answer
1 Heading General
Details on product timeline and security features for these products? Are there differences
2 Question w.r.t. security controls available in the products?
Please provide a functional block diagram showing the internal stages (TCAM filtering,
3 Question MACsecmodule, ..).
4 Question Does the switch contain any backdoors, supplier mgmt interfaces, or similar?
5 Heading HSM & Key Handling
6 Question Does the switch contains an HSM? Please provide details on the capabilities of the HSM.
7 Question How many keys can the HSM store?
8 Question How is the integrity and confidentiality of stored keys ensured?
9 Question Are OTP bits available for keys?
10 Question Can the HSM handle certificates? Which? How many?
11 Question Which crypto accelerators does the HSM include?
12 Question How are keys injected? (for secure boot, update, interface authentication, MACsec, ...)
13 Question Can we add custom SW implementations to the HSM firmware?
What types of random number generators does the HSM contain? What certifications do the
14 Question RNGs have?
15 Heading Interfaces
Which privileged interfaces are available on the switches (JTAG, Remote, ...) and how are
16 Question these interfaces protected?
17 Question For remote interfaces:
18 Question Which capabilities does the interface offer, what can be reconfigured, etc.?
19 Question What kind of authorization protocol is used?
20 Question Is the communication to the interface authenticated and encrypted?
21 Heading Secure Cc ication Protocols
22 Question Support for which secure communication protocols are available in your products?
23 Question Is MACsec supported? Please give details:
Which version / profile of MACsecis implemented? IEEE 802.1AE 2018, OA TC17, IEEE
24 Question amendments, ...7
25 Question Which ports support MACsec?
26 Question How many SecYs, SCs, SAs, ... are supported per port?
Which methods of VLAN tag handling are supported? (before, in-the-clear, SecTAG; after
27 Question SecTAG)
28 Question Are there custom MACsec features in your product?
29 Question How are short length Ethernet frames handled w.r.t. the MACsec module?
30 Question Is MACsec Key Agreement (MKA) supported? Please give details:
Which version / profile of MKA is supported? IEEES02.1X 2020, OA TC17, IEEE amendments,
31 Question ..?

22 Nuestinn

Questionnaire_PHY-Security Questionnaire_Switch-Security ChangelLog

Are there anv ronstraints? IF o anlv ane A nar nart siinnnrted 1

The SMEP Attack
Disclaimer

The following slides contain Realtek proprietary information
We have responsibly disclosed the following vulnerability to Realtek and suggested improvements
Realtek fixed the protocol and published according updates to the switch firmware

Realtek approved these slides and this talk at AUTO-ISAC

We appreciate Realtek’s collaboration and the very serious and constructive handling of this topic!

Offentlich C-SCO | XC-CE/ECS1 | 09.07.2025
O oot BOSCH

i REALTEK _

Security

231 March. 2022

CNBG

© 2020 Realtek Semiconductor Corp. All rights reserved REALTEK COMMUNICATIONS NETWORK BG

J:4 REALTEK
Security Consideration

B Possible Attack Routes:

Secure Image

Secure Access

Switch

JTAG

Note

Included in the switch but not
shown on this slide:

+ HSM

+ Secure Storage

* Crypto HW Accelerators

1 1
I | I
i ' 1
I I
1 1
I 1
* DDos: Distributed Denial-of-Service attack I Ethernet 1
| I
I I
1
1

DDoS
* QSPI: Quad Serial Peripheral Interface

* JTAG: Joint Test Action Group

Secure Gateway |

=
CNBG © 2020 Realtek Semiconductor Corp. All rights reserved

COMMUNICATIONS NETWORK BG

34 REALTEK

CASE_1V: Attack from Ethernet...

Realtek LOCK function & Secure Access
1. SRAM/Register access via Ethernet:

;‘% Disabled by OTP
“SPI/ 12C/ SMI 2. Secure Access: Using AES key to encrypt
message.

ITAG

o RN _Sof RSA(RM_S0C + SN_S0C) + Hash(RN_SaC + SM_50C) + RN_Switch
- RTK RSA parameter RN_SoC
0 RN_SoC RSAIRN_Swiitch + [SM_SoC+1)) + RN _Switch
| RN _Switch Hash{RMN_Switch + (SN_SoC+1)) RN_SoC

RN_SoC + RN_Switch = session key

o Data Encrypted by Session Key
€

* RSA: Rivest-Shamir-Adleman,
a public-key cryptosystem
* RN: Random Number
* HSM: Hardware Security Module Ethernet

Register/ SRAM read/write

=
CNBG © 2020 Realtek Semiconductor Corp. All rights reserved

| COMMUNICATIONS NETWORK BG

Ji4 REALTEK

Secure Access: Session Key & Secure Message

B Generate “Session Key” and adopt it to do “Data Encryption(secure message)”.

Ethernet

(1). SoC RSA Private(A) | | Hash(A) || SeC RTK Parameter

|
Random
Number

Switch

o

“Switch” Message
RSA Private Key

-~ -~
!’ SOC and Switch must pre-store the ‘\

fjp

I counterpart’s RSA public key, and
\ its own RSA private key (we call !

“SoC"” Message
RSA Public Key

N _them TLS keys). ,
-

e -

(2):

(3). Switch RSA Private(B) | | Hash(B) | | Switch RTK Parameter

o |+ Adopt “SoC Message RSA Public Key” to do decryption.

* (Calculate a new Hash value Hash'(A) & compare to Hash(A)

SoC/ECU
* Requirement for o
SoC/ECU: “SoC” Message
1. RSA2048 (no RSA Private Key Random
padding scheme) T
2. AES256-CBC Q=
i' ::AGI “Switch” Message
: RSA Public Key
(4):
* Adopt “Switch Message RSA Public
Key” to do decryption. “
* (Calculate a new Hash value Hash’(B) & XOR
compare to Hash(B)

(5). RN_SoC ™ RN_Switch = Session Key(symmetric key)

FICNBG

COMMUNICATIONS NETWORK BG&

(256bits)

B Definition:
1. A=SN_SoC || RN_SoC
2. B=SN_SoC+l || RN_Switch

© 2020 Realtek Semiconductor Corp. All rights reserved

A

et @ NextCarNet

The SMEP Attack AUTO:1SAC

c
O

= The key agreement

generate RSA key pair p generate RSA key pair pk_S, sk_S
1. The host generates a challenge ere pk_H = (6 < Pk_H, pk_S where pk_H = (65537, n.8)
(nonce_H) as well as his randomness for pu As0 ing Keys
the session key (rnd_H) and “signs” it / g _H =0° | :
(or encrypts it?) sen. no 7 - '
2. The switch verifies the “signature”, i = A @ sienature A Hashw :
computes the response (nonce_H + 1), his A’ = signature_A"65537 mod n_H
randomness for the session key (rnd_S) OA;'(grl‘_latr:g—ﬁ e R
“ _: 9 . — -7 gen. rnd_S (rd number)
and “signs” it 0 (always) e B, Hosh(® B =nonce_H + 1| md_S
signature_b, Has siynature_B = B*sk_S mod n_S
= The actual attack R ———) =
ash(B B : B=0+1|rnd_S
— Attacker chooses A=nonce_H |/ rnd_H=0 v G B 8 No secretinvolved +1llrnd_

— signature_A s then always 0 Key Agreement

— Switch will verify signature and accepts the
challenge = 0

compute session keys: compute session keys:

— Attacker can “verify”/“decrypt” the signature key = md_H xor rd_S
and learns rnd_S

. key =rnd_H xor rnd_S

secure channel

Secure Session

— Attacker can compute key = 0 xorrnd_S : ;
‘] O Offentlich C-SCO | XC-CE/ECS1 | 09.07.2025 ') BOSCH

The SMEP Attack

= The key agreement

generate RSA key pair p generate RSA key pair pk_S, sk_S
1. The host generates a challenge ere pk_H = (6 « P . Pk S where pk_H = (65537, n_S)

A

(nonce_H) as well as his randomness for — A=0 ing Keys
the session key (rnd_H) and “signs” it / nonce_H = 0
(or encrypts it?) R —— A — rmd_H=0 i
2. The switch verifies the “signature”, i O et @ seawre e
computes the response (nonce_H + 1), his A’ = signature_A"65537 mod n_H
randomness for the session key (rnd_S) SETEre £ S el

| X 0%sk_H mod n_H = nonce_H |l rnd_H=A
and “SlgnS” It 0 (always) gen. rnd_S (rnd number)

) B=nonce_ H+1]|[rnd_S
signature_B, Hash(B) siynature_B = B*sk_S mod n_S

A

= The actual attack . ;
— Attacker chooses A = nonce_H || rnd_H =0 once_S [l md_s = B o seeiet lyveled S

— signature_A s then always 0

Key Agreement

— Switch will verify signature and accepts the : :
challenge = 0 = —

compute session keys: compute session keys:

Attacker can “verify”/“decrypt” the signature key = rnd_H xor md_S . key =md_H xor rnd_$

secure channel

= -

Actually, the shown attack is'only one possibility to break this protocol — can you find more?
' | BOSCH

‘] ‘] Offentlich C-SCO | XC-CE/ECS1 | 09.07.2025

10t

s :@éNextéair'Nef

The SMEP Attack AUTO:ISAC "
Extracting the public key

>

= Side note: how hard is it to learn the public key?
— Realtek stated the public key cannot be exported from the switch’s memory
= However, we can use the switch as an oracle for this:
1. Guess public exponent e = 65537
2. Use the switch’ implementation to generate k many message / signature pairs (m_i, s_i)
3. Compute
gcdim 1 -s 1"e,m 2-s 2%, ..,m k—-s k") =1orn_S

| promised no more math — so you have to trust me here %

——

gcd = greatest common divisor

Offentlich C-SCO | XC-CE/ECS1 | 09.07.2025
12 BOSCH

The SMEP Attack
Joint Development: SMEPv2

* Three parts of SMEP

10t

(W NextCarNet

HlL

Host | Switch

1. Pre-sharing keys

- Both host and switch generate two RSA 3072-bit key pairs,
one for encryption, one for signing

- These keys are pre-shared in a trusted environment

generate RSA key pair pk-enc_S, sk-enc_S
generate RSA key pair pk-sign_S, sk-sign_S

generate RSA key pair pk-enc_H, sk-enc_H
generate RSA key pair pk-sign_H, sk-sign_H

pk-enc_H, pk-sign_H

v

pk-enc_S, pk-sign_S
Pre-Sharing Keys

2. Mutual authenticated key agreement

1. The host initiates the SMEP run by generating a random nonce and random

number rnd_H. The random number rnd_H forms the host’s contribution to
the session key. For transmission, it therefore has to be confidential and is
encrypted under the switch’s public key pk-enc_S (resulting in the ciphertext
c_H). To assert the authenticity of this random number, the ciphertext is then
signed with the host’s private signing key sk-sign_H (resulting in the
signature s_H). Eventually, the host sends nonce, c_H, and s_H to the
switch (1).

2. The switch verifies the signature s_H using the host’s public signature key
pk-sign_H, and decrypt the random rnd_H using its own private decryption
key sk-enc_S. The switch then generates a random number rnd_S that
forms its contribution to the session key. As the host, the switch encrypts
rnd_S with the help of pk-enc_H to the ciphertext c_S and signs it with his
private signature key sk-sign_S to get the signature s_S. Finally, the switch
responds with nonce+1, c_S, and s_S to the host’s initial message (2).

generate nonce

generate rnd_H
c_H = PK_Enc(pk-enc_S, rnd_H)

s_H = PK_Sign(sk-sign_H, nonce || c_H) 6 nonce,c H.s H
o » C_H, S

PK_Vrfy(pk-sign_H, nonce || c_H, s_H)
rnd_H = PK_Dec(sk-enc_S, c_H)
generate rnd_S

c_S = PK_Enc(pk-enc_H, rnd_S)
s_S = PK_Sign(sk-sign_S, nonce+1 || c_S)

nonce+1,c_S,s_S e

A

PK_Vrfy(pk-sign_S, nonce+1 || c_S, s_S)
assert nonce+1 is correct
rnd_S = PK_Dec(sk-enc_H, c_S)

utual Authenticated Key Agreemen

3. The host finally verifies the signature s_S with the switch’s public signature
key pk-sign_S and checks that the received nonce+1 is correct (i.e.,

corresponds to his initial chosen nonce+1). Afterwards, the host decrypts the
switch’s random number rnd_S from the ciphertext c¢_S using his private
decryption key sk-enc_H.

3. Secure channel / session

- Both parties can now derive the session keys from the xor sum of the
two random numbers rnd_H and rnd_S.

compute session keys:
keys = rnd_H xor rnd_S
enc-key || mac-key = split(keys)

compute session keys:
keys = rnd_H xor rnd_S
enc-key || mac-key = split(keys)

secure channel w/ enc-key & mac-key
L

»

Secure Session

13 Offentlich C-SCO | XC-CE/ECST | 09.07.2025

BOSCH

The SMEP Attack
SMEPv2: Mutual Authentication

* Three parts of SMEP

JAW\ :'11h s T
AUTO-ISAC —:@:Ne tCarNet

Automotive Information Sharing and Analysis Center

Host |

Switch ‘

1. Pre-sharing keys

- Both host and switch generate two RSA 3072-bit key pairs,
one for encryption, one for signing

- These keys are pre-shared in a trusted environment

generate RSA key pair pk-enc_H, sk-enc_H
generate RSA key pair pk-sign_H, sk-sign_H

generate RSA key pair pk-enc_S, sk-enc_S
generate RSA key pair pk-sign_S, sk-sign_S

pk-enc_H, pk-sign_H

pk-enc_S, pk-sign_S
Pre-Sharing Keys

2. Mutual authenticated key agreement

1. The host initiates tja
number rnd_H. T
the session key.
encrypted under

generate nonce
generate rnd_H
c_H = PK_Enc(pk-enc_S, rnd_H)

After signature and nonce+1
verification, the host has
c_H). To assert t

signed with the hd authenticated the switch

signature s_H). BV .
switch.

xt is then

2. The switch verifies the signature s_H using the host’s public signoe
pk-sign_H, and decrypt the random rnd_H using its own private decryptio
key sk-enc_S. The switch then generates a random number rnd_S that
forms its contribution to the session key. As the host, the switch encrypts
rnd_S with the help of pk-enc_H to the ciphertext c_S and signs it with his
private signature key sk-sign_S to get the signature s_S. Finally, the switch
responds with nonce+1, ¢S, and s_S to the host’s initial message.

assert nonce+1 is correct
rnd_S = PK_Dec(sk-enc_H, c_S)

s_H = PK_Sign(sk-sign_H, nonce || c_

PK_Vrfy(pk-sign_S, nonce+1 || c_S, s_

After receiving the first

correctly encrypted and

authenticated message i T e e
within the secure AN

session, the switch has =2El W e ippesilic D)

authenticated the host

Caution!

Mitual Authenticated sreement Due to replay attacks,

3. The host finally verifig
key pk-sign_S and c

the switch cannot
authenticate the host

The session keys are
confidential and
authentic and thus
protect the established
channel.

corresponds to his ini
switch’s random num
decryption key sk-enq

compute session keys:
keys = rnd_H xor rnd_S
enc-key || mac-key = split(keys)

3. Secure channel / se

- Both parties can no
two random number

already with the first
message!

| secure channel w/ enc-key & mac-ke

Secure Session

14 Offentlich C-SCO | XC-CE/ECST | 09.07.2025

BOSCH

10t -

The SMEP Attack AUTO.IsAC ~SNeCale
SMEPvV2: Formal Verification

attacker[active] - 1

amep . vp

// Parties
principal Host[]

= Verifpal (see https://verifpal.com/) principal suitehl)
model of the protocol princivad mostl
generates priv_host_enc m]

pub_host_enc = G*priv_host_enc

u Forma"y Verifies the Claimed generates priv_host_sign
. pub_host_sign = G"priv_host_sign generates priv_host_enc
security goals:]

Gpriv_host_enc
Host -> Switch: [pub_host_enc], [pub_host_sign]

— Confidentiality of rnd_H /1 Pre Shared Public Switch keys host_sic 3*priv_hos
rincipal Switch[
— Confidentiality of rnd_S e [pub_host enc], [pub host sign]

pub_switch_enc = G priv_switch_enc
generates priv_switch_sign

— Authentication Of hOSt tOWardS pub_switch_sign = G"priv_switch_sign generates priv
] .

itch _enc

_switch _enc
_aign

v _switch sign

SWItCh switch -> Host: [pub_switch enc], [pub_switch sign]

- Authentication of switch et et
towards host generates nance [pub_switch enc], [pub_switch sign]

generates rnd_host
c_host = PKE_ENC(pub_switch_enc, rnd_host)
s_host = SIGN(priv_host_sign, CONCAT(nonce, c_host}) generates nonce
] rnd
Host -> Switch: nonce, ¢_host, s_host 3
= Note: - PKE_ENC
. . . s host = SIGN(p
principal Switch[—
_ = SIGNVERIF(pub_host_sign, CONCAT(nonce, c_host), s_host)?

ch enc, rnd ho
CONCAT (nonce, c_|

- Vel’ifpa| iS Currently beta rnd_host_dec = PKE_DEC(priv_switch_enc, c_host) nonce, c_host, s host
software and not formall
Veriﬁed |tse|f y QZZEEEEEE;EE;:EEEE:::E:‘Dst e oot omsen) Modelhng al'tefact, _’* [ipf '.T:R{Fi[ﬂjli)_l'ni t sign, ml'I(: E:’i‘&'jj:liu:]'lif;‘, ,:E‘:h.'&t) » s_host)?
This is not a mathematical Towitch ~ SIGN(priv. smitch-sig, CONAT(next_nonce, c_suitch)) equivalent to £od_host_dec switeh_enc, ¢_host)
- prc:zfls nota mathematica éwitch -> Host: next_nonce, c_switch, s_switch nonce+1— rrdl switeh)
- Due to modeling COnstraints, p”nilEai;ggigé;:itug;:‘:tnh;::;n:t;')\;»:T(neeroncE, c_switch), s_switch) ‘] T e ey c o)
the SWitCh does nOt Send end_switch,dec - DKI’_"JFC(prﬁv_host_;n:, <_switch) next nonce, c_switch, s_switch
nonce+1, but hash(nonce), : — o
which is semantically the " conftdentiatity? rmd_sutvch _ = s ‘ B
same — however, due to vtnentteations st s Switeh: s hast L e
efficiency reasons, nonce+1 authentication? Switch -> Host: s_switch

should be implemented

‘] 5 Offentlich C-SCO | XC-CE/ECS1 | 09.07.2025

https://verifpal.com/

/—a-«\ h 1l e
W ra. p u p ﬁm!;!lnxagh;m!m Analmce(m; = @ =NextCarNet

Questions? Feedback?

“Secure, or not secure,
that is the question”

—freely adapted from Hamlet

Note

» Lesson learned: do not use textbook RSA, but properly padded versions of RSA
(RSAES-OAEP, RSASSA-PSS, ...)

* Open Alliance TC19 is specifying a switch management framework, including secure access.
Once this is available, this is hopefully the right solution to be used.

Offentlich C-SCO | XC-CE/ECS1 | 09.07.2025
16 e BOSCH

	Slide 1: AUTO-ISAC The SMEP Attack
	Slide 2: RSA
	Slide 3: EE Architecture, Gateways or Zone Controllers and Switches
	Slide 4: Supplier Mgmt: Switch Evaluation
	Slide 5: Disclaimer
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Extracting the public key
	Slide 13: Joint Development: SMEPv2
	Slide 14: SMEPv2: Mutual Authentication
	Slide 15: SMEPv2: Formal Verification
	Slide 16: Questions? Feedback?

