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Abstract. This paper serves as a systematization of knowledge of linear cryptanalysis
and provides novel insights in the areas of key schedule design and tweakable block
ciphers. We examine in a step by step manner the linear hull theorem in a general
and consistent setting. Based on this, we study the influence of the choice of the key
scheduling on linear cryptanalysis, a – notoriously difficult – but important subject.
Moreover, we investigate how tweakable block ciphers can be analyzed with respect
to linear cryptanalysis, a topic that surprisingly has not been scrutinized until now.
Keywords: Linear Cryptanalysis · Key Schedule · Hypothesis of Independent Round
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1 Introduction
Block ciphers are among the most important cryptographic primitives. Besides being used
for encrypting the major fraction of our sensible data, they are important building blocks
in many cryptographic constructions and protocols. Clearly, the security of any concrete
block cipher can never be strictly proven, usually not even be reduced to a mathematical
problem, i. e. be provable in the sense of provable cryptography. However, the concrete
security of well-known ciphers, in particular the AES and its predecessor DES, is very well
studied and probably much better scrutinized than many of the mathematical problems
on which provable secure schemes are based on.

This been said, there is a clear lack of understanding when it comes to the key schedule
part of block ciphers. Let us quickly recall the role of the key schedule algorithm in a
block cipher. The key schedule takes as input a master key (in the case of AES-128 this is
a 128 bit string) and outputs so-called round keys that are used in each round to mix the
current state with the key (most often by simply XORing the round key to the state). In
the case of AES-128, the total length of the round keys is 11 · 128 = 1408 bits, and thus
the AES key schedule, as a function, is a mapping from {0, 1}128 to {0, 1}1408.

However, in general, it is not yet clear what properties a good key schedule has to
have. There are some general guidelines on what a key schedule should not look like.
These guidelines are rather basic and ensure mainly that trivial guess-and-determine or
meet-in-the-middle attacks are not possible. In a nutshell, it should not be possible to
compute large parts of the encryption algorithm, i. e. a large number of rounds in the case
of iterated ciphers, without having to know or guess the whole master key. An example of
such a trivially bad key schedule is the idea of using two independent (master) keys in
order to double the key length, i. e. double encryption.

Similarly, a key schedule should be such that structural attacks (e. g. slide-attacks,
symmetries, invariant subspace attacks) are not possible. It is often possible to check, for
a given key schedule, if it fulfills this criterion.
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So while there is an understanding of what a key schedule should provide in terms
of structural attacks (and for the key-guessing parts in statistical attacks), the influence
of the key schedule on statistical attacks, in particular on linear and differential attacks
is to a large extent completely open. In a nutshell, for claiming a cipher secure against
linear and differential attacks, one has to demonstrate that the cipher does not possess
certain statistical irregularities. In order to be able to do so, it is in many cases necessary
to assume that all (round) keys are independently and uniformly chosen. While this is
hardly the case for any real cipher, this assumption is on the one hand needed to make
the analysis feasible and on the other hand often does not seem problematic as even with
the keys not independently and uniformly chosen, most ciphers (experimentally!) do not
behave different from the expectation.

Linear cryptanalysis, introduced by Matsui [25], is one of the major statistical attacks
on block ciphers. Since its invention in the early 1990s, many extensions and variations
have been considered. The most important theoretical investigation is certainly the work
of Nyberg [27], where the concept of linear hulls was introduced and the assumption of
round-independence needed in Matsui’s original approach was clarified. Similar results
can be derived by using the concept of correlation matrices, as done by Daemen and
Rijmen [17]. A statistical model for estimating the data complexity of various linear attacks
is presented in [7]. The concept of the linear hulls in particular shows the key-dependency
of the correlation of a given linear approximation. Due to the key-dependency of the
distribution, for a complete understanding of the security of a block cipher with respect to
a linear attack, one has to understand not only one correlation, but rather the distribution
of Fourier coefficients taken over all possible master keys. Only then one is able to estimate
the fraction of weak keys, that is keys such that the corresponding correlation is high
enough to be exploitable in an attack. Following Nyberg’s fundamental theorem, it is
possible, at least theoretically, to compute the mean and the variance of this distribution
in the case of independent round keys. But it seems hard to derive more information about
the distribution. It would be especially interesting to derive bounds on the tails, i. e. the
fraction of weak keys. Moreover, even for just estimating the variance in practice, the
assumption of independent round keys is crucial [6] (while it is also possible to compute
the variance without this assumption, cf. [10], doing so in practice seems to be hard).

Note that the above discussion on the key schedule of course extends, and in some
respect becomes even more relevant, when we consider the case of a tweakable block cipher,
and discuss how a suitable tweak schedule should be constructed. This analogy is maybe
most obvious in the TWEAKEY setup [21] where key and tweak are just parts of the same
object, but is certainly important for any kind of tweak schedule.

In this paper we aim to systemize the theoretical notions underlying linear cryptanalysis.
Furthermore, we take some steps forward to increase our understanding of the influence of
key and tweak schedule on the security of a (tweakable) block cipher with respect to linear
attacks.

Our Contributions
Systematization of Linear Cryptanalysis

We begin with recapitulating the idea of linear cryptanalysis in Section 2. By doing so, we
try to express all terms as Fourier coefficients instead of using correlations, as we feel that
this actually gives a more clear picture. This perspective turns out to be especially nice
when it comes to the correlation of a linear trail. In many papers on linear cryptanalysis,
the correlation of a linear trail is either not well defined (when using the piling-up lemma)
or not well motivated (when given as a pure definition). However, in our set-up, the
correlation of the linear hull nicely corresponds to a Fourier coefficient. Note that this
perspective is implicitly already contained in Nyberg’s original paper on the linear hull [27],



476 Linear Cryptanalysis: Key Schedules and Tweakable Block Ciphers

but we feel that it did not get the attention it deserves.
To support the general understanding, we develop the Fourier coefficient of the linear

hull by first considering a generic key-dependent block cipher Ek, then specializing it to a
round based structure and finally to the most commonly used key-alternating case. While
the corresponding proofs involve only basic techniques, and may have appeared elsewhere,
we nevertheless include them in Appendix A, in order to preserve their educational value
and to aid researchers unfamiliar with the topic to gain a better understanding. Building
on these fundamentals, we then turn to key schedules.

Bizarre Examples: The Tail of the Distributions

First, we start by exploring how the key schedule can influence the distribution of Fourier
coefficients. This first part, in Section 3 builds upon the example on Present from [2].
Beside the result of Abdelraheem et al., many papers cover experiments on Present – to
name just a few: [8, 10, 14, 20]. As observed in [29] the distribution of the correlation for
Present follows closely a normal distribution with mean zero. Moreover, the variance of
this distribution fits to what can be expected for independent round keys. The observation
in [2] was that, when replacing the key schedule of Present by a key schedule that
produces identical round keys in every round, the variance increases significantly. This
in particular means that the cipher becomes weaker against linear cryptanalysis, as the
fraction of keys that have a large correlation (in absolute terms) increases significantly (cf.
Figure 4). However, even so the variance increases, the distribution still follows a normal
distribution closely.

By doing extensive experiments with a large set of variants of the Present cipher,
we eventually observe many interesting examples of how the key schedule can influence
the distribution of Fourier coefficients in a much more dramatic manner. While we show
several of those distributions in the appendix, the main interesting conclusion actually
follows from an example depicted in Figure 7. Recall from above that one important
question is, if we can prove stronger statements about the number of keys with a large
absolute Fourier coefficient, beyond what is given by Tchebysheff’s general upper bound
on any distribution. Now, the example we found leads to a negative conclusion. That is,
in general it seems that we cannot hope to prove any stronger statements.

Linear Key Schedule

The next contribution leads to a much more positive, constructive result. Here, in Section 4
we focus on the case of a linear key schedule. Linear key schedules are very common in
block ciphers. Besides the DES, many lightweight ciphers actually use the easiest possible
linear key schedule, i. e. simply use identical round keys. In order to avoid structural
attacks, in particular slide attacks, and in order to break symmetries, it is common sense
to add varying round constants to every round key. Now, in Section 4 we prove that any
linear key schedule is sound, with respect to linear cryptanalysis, in the following sense:
For any given linear key schedule, the average variance of the distribution of the Fourier
coefficients, taken over all possible round constants, is exactly the same as for independent
round keys. Thus, as a designer, after fixing any linear key schedule of ones choice, one
can expect that when adding a randomly chosen set of round constants, the distribution of
the Fourier coefficients closely follows the one in the case of independent round keys. This
adds some theoretical foundation on the hypothesis of independent round keys criticized
above in the case of linear key schedules. We actually back up this theoretical observation
by experiments on, guess what, Present.
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Tweakable Block Ciphers

Finally, we turn our attention to tweakable block ciphers and how the additional input,
i. e. the tweak, possibly helps an attacker. The main possible advantage of the tweak,
when it comes to linear cryptanalysis, is that instead of approximating a linear function
of the ciphertext by a linear function of the plaintext only, the attacker can now try to
approximate (a linear function of) the ciphertext by a linear function of the plaintext and
a linear function of the tweak.

To study this potentially new attack vector, we elaborate on the linear hull of a
tweakable block cipher. We look at the case of a linear tweak schedule and later specialize
on tweak-alternating and key-alternating block ciphers. It turns out that the linear hull,
and therefore the Fourier coefficient an attacker can use, is actually composed of the same
linear trails as in the non-tweaked case. In other words, by adding the tweak, no new
linear characteristics are introduced. Thus, protecting a tweakable cipher with linear tweak
schedule against linear cryptanalysis basically does not need any additional considerations,
but can be done exactly the same way as it is done for non-tweakable block cipher, i. e. by
upper bounding the Fourier coefficient of any single linear characteristic. Note that this is
in sharp contrast to the differential case, where using a difference in the tweak often leads
to differential characteristics with a significantly higher probability.

We like to clearly mention that, from a technical point of view, we mainly reuse
standard approaches. Still, our results shed some new light on the wide-open field of the
design of a sound key schedule.

2 Systematization of Linear Cryptanalysis
In the course of this section, we develop in a step by step manner the setting of linear
cryptanalysis in a general and consistent way. Within our systematization, we also highlight
the meaning of a linear trail as this seems to be not well-known.

Let us start by giving some basic notations before we recall the basic concepts of
linear cryptanalysis. We denote by F2 the finite field with two elements and by Fn2 the
n-dimensional vector space over F2, i. e. the set of all n bit strings together with the bitwise
XOR-addition. When dealing with linear cryptanalysis, we need to define a scalar product
on Fn2 . For x, y ∈ Fn2 by 〈x, y〉 we denote the canonical scalar product, i. e. 〈x, y〉 :=

∑
xiyi.

We will often deal with linear mappings on Fn2 and, given a linear mapping L : Fn2 → Fn2
we denote by LT its adjoint linear mapping, i. e. the mapping such that〈

x, L(y)
〉

=
〈
LT (x), y

〉
∀x, y ∈ Fn2 .

Note that, when L is given as an n× n binary matrix, then LT is nothing else than the
linear mapping corresponding to the transposed matrix.

Linear Cryptanalysis
Next, we recall the basic concepts of linear cryptanalysis. For this, let

Ek : Fn2 → Fn2

be a block cipher on n bit blocks, indexed by a key k. In classical linear cryptanalysis,
we try to approximate a linear Boolean function of the output Ek(x) by a linear Boolean
function of the input x. More precisely, we search for a pair of input and output masks
(α, γ), such that the bias of the linear approximation

〈γ,Ek(x)〉 ≈ 〈α, x〉
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is large in absolute terms. We define the bias εEk(α, γ) by

Prx [〈γ,Ek(x)〉 = 〈α, x〉] = 1
2 + εEk(α, γ),

and to make linear cryptanalysis successful we have to choose α and γ such that |εEk(α, γ)|
is large since the linear approximation can then be used as a distinguishing property. Due
to scaling issues, it is often more convenient to work with the correlation cEk(α, γ) :=
2εEk(α, γ) instead of the bias directly.

In this paper, however, we are mainly working with the Fourier (or Walsh) transforma-
tion of Ek. The Fourier coefficient of a vectorial Boolean function f : Fn2 → Fm2 at position
α ∈ Fn2 and γ ∈ Fm2 is defined as

f̂(α, γ) :=
∑
x∈Fn2

(−1)〈α,x〉+〈γ,f(x)〉
.

In terms of linear cryptanalysis, the Fourier coefficient of Ek is nothing else than a scaled
version of the bias (and therefore nothing else than a scaled version of the correlation).
More precisely it holds that

Êk(α, γ) = 2ncEk(α, γ) = 2n+1εEk(α, γ).

As it is usually computationally infeasible to compute the (exact) Fourier coefficient of
any reasonable block cipher Ek, we make use of the fact that almost all block ciphers are
round based. That is, Ek is then the composition of several (comparably simple) round
functions Gi : Fn2 → Fn2 . Those round functions are actually key-dependent, but in order
to simplify notation, we ignore this key-dependency for now (and come back later to this
topic extensively). So instead of computing the exact Fourier coefficient, or correlation, of
a linear approximation, one usually focuses on what is called linear trail (synonymously
often called linear path or linear characteristic). For an r round cipher

Ek(x) = Gr−1 ◦ · · · ◦G1 ◦G0(x)

a linear trail θ is a collection of r + 1 masks

θ = (θ0, θ1, . . . , θr)

and the correlation of a trail is defined as

Cθ :=
r−1∏
i=0

cGi(θi, θi+1). (1)

Initially, in his seminal work [25], Matsui derived the correlation of a trail by the so-
called piling-up lemma, assuming that the approximations of different rounds behave as
independent Boolean random variables. Later, Nyberg [27] showed how this assumption
can be avoided by introducing the concept of the linear hull. She also showed that Matsui’s
famous Algorithm 2, which he used to break DES, was actually making use of the linear
hull and not of a single linear trail. This has also nicely been shown for iterated block
ciphers by using the technique of correlation matrices [15, 17, 18]. We recall Nyberg’s
results in terms of the Fourier coefficients of Ek. The first and crucial idea is to consider
Ek as a function in two variables, one being the plaintext and the second being the key.
For an m bit key k we consider

F : Fn2 × Fm2 → Fn2

with
Ek(x) := F (x, k),
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see also Figure 1(a). Nyberg basically showed that

2mÊk(α, γ) =
∑
β∈Fm2

(−1)〈β,k〉F̂ ((α, β), γ), (2)

i. e. the Fourier coefficient of Ek corresponds to the (signed) sum of Fourier coefficients of
F over all possible masks for the key-input. This is what is referred to as the linear hull.
We recall Equation (2) and its key scheduled variant in Proposition 1. In addition to the
already mentioned results, Nyberg [26, Theorem 3] also covered this generic influence of
a key schedule by the notation of one function having as an input the output of another
function.

F

k Ek

m c

(a) Generic key-dependent function Ek

F

KS

k

EKS
k

m c

(b) and its key scheduled variant EKS
k

Figure 1: Most generic function.

Proposition 1. Let Ek and EKS
k be the functions (cf. Figures 1(a) and 1(b))

Ek : Fn2 → Fn2
Ek(x) := F (x, k)

EKS
k : Fn2 → Fn2

EKS
k (x) := EKS(k)(x) = F (x,KS(k))

with F : Fn2 × Fm2 → Fn2 and key schedule KS : F`2 → Fm2 . Then

2mÊk(α, γ) =
∑
β∈Fm2

(−1)〈β,k〉F̂ ((α, β), γ),

2`+mÊKS
k (α, γ) =

∑
β∈F`2
β′∈Fm2

(−1)〈β,k〉K̂S(β, β′)F̂ ((α, β′), γ).

For the proof, refer to Section A.2.
From Equation (2) we can easily deduce the following equation by a simple application

of the well-known fact [13, Corollary 2] that the Fourier transform is its own inverse, up to
a constant factor.

F̂ ((α, β), γ) =
∑
k∈Fm2

(−1)〈β,k〉Êk(α, γ) (3)

Equation (3) might not seem helpful at first sight because it would mean a known-key
attack. However, it turns out to be very meaningful in multiple ways. First of all, it will
enable us to assert a clear meaning to the definition of a linear trail later in this section.
Second, this is already the most basic form of the linear hull theorem for tweakable block
ciphers which will be discussed in Section 5 extensively.

Next, we consider the already mentioned case of round-based block ciphers. The
linear hull theorem can then be simplified such that the right hand side of the equation
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only contains Fourier coefficients of the round functions. This specialization of the first
proposition has applications for block ciphers that introduce the key material in other
ways than simply XORing it onto the state.

G0

k0

· · · Gr−1

kr−1

m c

r-Roundk

(a) Round-based key-dependent function r-Roundk

G0 · · · Gr−1

Key Schedule KS

k

m c

r-RoundKS
k

(b) and its key scheduled variant r-RoundKS
k

Figure 2: Round-based functions.

Proposition 2. Let r-Roundk and r-RoundKS
k be the functions (cf. Figures 2(a) and 2(b))

r-Roundk : Fn2 → Fn2
r-Roundk(x) := Gr−1(. . . (G0(x, k0), . . .), kr−1)

r-RoundKS
k : Fn2 → Fn2

r-RoundKS
k (x) := r-RoundKS(k)(x)

with Gi : Fn2 × Fm2 → Fn2 and key schedule KS : F`2 → (Fm2 )r. Then

2rm+(r−1)n ̂r-Roundk(α, γ) =
∑

β∈(Fm2 )r
(−1)〈β,k〉

∑
θ∈(Fn2 )r+1

θ0=α,θr=γ

r−1∏
i=0

Ĝi((θi, βi), θi+1),

2`+rm+(r−1)n ̂r-RoundKS
k (α, γ) =

∑
β∈F`2

β′∈(Fm2 )r

(−1)〈β,k〉K̂S(β, β′)
∑

θ∈(Fn2 )r+1

θ0=α,θr=γ

r−1∏
i=0

Ĝi((θi, β′i), θi+1).

For the proof, refer to Section A.2.
As this proposition looks a bit puzzling, let us elaborate a bit on it. We only need

to pay attention on the rightmost part, the sum over θ and the product over the round
functions’ Fourier coefficients, as we know the other part already from Proposition 1. So
basically ̂r-Roundk is the product of the round functions’ Gi Fourier coefficients. But
instead of having only one possible trail through all round functions, we can choose, after
each round, which intermediate mask to use. Eventually we end up with the sum over all
possible θ, beginning with α and ending in γ, and thus having a linear hull over the round
functions.

Finally, we focus on the case where Ek is round based and the key-dependency is
introduced by XORing a key onto the current state in each round, i. e. if Ek is a key-
alternating cipher as depicted in Figure 3(a). This special case of the linear hull theorem
is the most famous one. It is usually cited using the correlation of linear trails as defined
in Equation (1).

Another point that is nicely highlighted by this stepwise development via the round
based function is the only small difference between Propositions 2 and 3. While we sum
over both the key mask β and the round functions input mask θ in the former, the second
sum collapses in the latter, as we will see in the next paragraph. This is due to the fact
that we cannot say anything about the introduction of key material in a generic round
function. But instead, if the key is simply XORed onto the input of the round function,
this fixes the corresponding masks θi = βi, cf. [4] or [9, Lemma 1].
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m H0 . . . Hr−1 c

k0 k1 kr−1 kr

r-KeyAltk

(a) Key-Alternating function r-KeyAltk over r rounds with k = (k0, . . . , kr)

m H0 . . . Hr−1 c

Key Schedule KS

k r-KeyAltKS
k

(b) and its key scheduled variant r-KeyAltKS
k

Figure 3: Key-Alternating functions.

Proposition 3. Let r-KeyAltk and r-KeyAltKS
k be the functions (cf. Figures 3(a) and 3(b))

r-KeyAltk : Fn2 → Fn2
r-KeyAltk(x) := Hr−1(. . . H0(x+ k0) + . . .) + kr

r-KeyAltKS
k : Fn2 → Fn2

r-KeyAltKS
k (x) := r-KeyAltKS(k)

with Hi : Fn2 → Fn2 and key schedule KS : F`2 → (Fn2 )r+1. Then

2(r−1)n ̂r-KeyAltk(α, γ) =
∑

β∈(Fn2 )r+1

β0=α,βr=γ

(−1)〈β,k〉
r−1∏
i=0

Ĥi(βi, βi+1)

= 2rn
∑
β

β0=α,βr=γ

(−1)〈β,k〉Cβ ,

2`+(r−1)n ̂r-KeyAltKS
k (α, γ) =

∑
β∈F`2

β′∈(Fn2 )r+1

β′
0=α,β′

r=γ

(−1)〈β,k〉K̂S(β, β′)
r−1∏
i=0

Ĥi

(
β′i, β

′
i+1
)

= 2rn
∑
β,β′

β′
0=α,β′

r=γ

(−1)〈β,k〉K̂S(β, β′)Cβ′ .

For the proof, refer to Section A.2.
Furthermore, in the case of a key-alternating cipher with independent round keys, i. e.

the case without a key schedule, the following lemma holds:

Lemma 1. Let Ek = r-KeyAltk be a key-alternating cipher, and F as defined in Proposi-
tion 1. Then

2−(r+2)nF̂ ((α, β), γ) =


r−1∏
i=0

cHi(βi, βi+1) = Cβ , if (α, γ) = (β0, βr)

0 , else

.

The proof uses Equation (3) and Proposition 3 and can be found in Section A.3.
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We like to highlight this fact as we feel it is not well-known, even so it is of course
implicitly contained in Nyberg’s work, see e. g. [28, Theorem p. 12]: The correlation of a
linear trail is nothing but the Fourier coefficient of F where F : Fn2 × (Fn2 )(r+1) → Fn2 is the
key-alternating cipher and the first and last key masks correspond to the message input
and message output mask, respectively. Hence, alternatively to Equation (1) we can write

Cθ = 2−(r+2)nF̂ ((θ0, θ), θr).

This is important to keep in mind as it actually asserts a clear meaning to the correlation
of a trail. And it is in contrast to many papers in the literature where either the trail
is derived by the piling-up lemma or the correlation of a trail is given directly by using
Equation (1) as a definition, as done above to link the usual notation to what we feel is a
cleaner way of presenting those connections. Given Lemma 1, one can also easily see the
connection of Proposition 1 and 3. Here, all masks that do not start and end in α and γ
vanish in the linear hull sum.

Distributions
When applying linear cryptanalysis in practice, we have to compute Fourier coefficients Êk
for some fixed key k. But as the Fourier coefficient exhibits a key-dependent behavior, cf.
Equation (2), we need to take into account how Êk is distributed over the key space, i. e.
what is the probability Prk

[
Êk(α, γ) = X

]
. In the case of key-alternating block ciphers

with independent round keys, r-KeyAlt in our notation, the Fourier coefficient follows a
normal distribution N and there are already results about the expected value and the
expected squared value, e. g. see [17, pp. 103–108]. Namely,

E
(

̂r-KeyAltk(α, γ)
)

= 1
2(r+1)n

∑
k∈F(r+1)n

2

̂r-KeyAltk(α, γ) = 0,

and

E
(

̂r-KeyAltk(α, γ)2
)

= 1
2(r+1)n

∑
k∈F(r+1)n

2

̂r-KeyAltk(α, γ)2 = 22n
∑

β∈(Fn2 )r+1

β0=α,βr=γ

C2
β .

Thus, the mean µ is 0 and the variance σ2 = 22n∑C2
β .

Daemen and Rijmen [16] did also extensively study the probability distributions for
block ciphers with independent round keys in both, the setting for differential and linear
cryptanalysis. However, they did not regard possible influences of the key schedule but
usually real block ciphers have a (often linear) key schedule to generate round keys. In
particular, we are interested in exactly this case, where the key schedule is linear. Such a
key schedule can have unexpected influences on our standard assumptions for block cipher
designs. In the following section, we investigate the special case of identical round keys.

3 Bizarre Examples
When we design a new cipher, we typically assume independent round keys and analyze the
behavior of linear trails in the hope that the behavior when using an actual key schedule
does not differ to much in practice. Note that, mainly due to Nyberg [27], the behavior
of independent round keys is well scrutinized. Here, one understands theoretically the
basic parameters of the distribution of possible Fourier coefficients for varying keys. In
particular, the average Fourier coefficients, that is the mean of the distribution, and the
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Figure 4: Distribution of Fourier coefficients for standard Present reduced to 10 rounds.
Possible Fourier coefficients of the mask (e21, e21) are plotted on the abscissa, while the
number of keys that lead to this Fourier coefficient is plotted on the ordinate.

average squared Fourier coefficients can be formalized, as shown in Section 2. Moreover,
we often expect the Fourier coefficients of linear trails to follow a normal distribution in
the case of independent round keys.

Aside from this general result, only few research was conducted for round keys derived
by a key schedule. One rather recent contribution by Abdelraheem et al. [2] exhibited
Fourier coefficient distributions as in Figure 4. Here, the distribution for identical round
keys has a significantly bigger variance than independent round keys, but still follows a
normal distribution. Continuing this analysis, we conduct extensive experiments with
Present variants and report the observed distributions.

The main motivation behind those experiments was to explore if one can bound the
fraction of weak keys, that is keys with a large absolute bias, tighter than by using the
very general result by Tchebysheff’s bound. In other words, we are interested in studying
what can be said about the tails of the Fourier coefficient distribution over the keys.

Recall that, for any probability distribution Tchebysheff’s inequality gives a result
about deviations from the distribution’s mean. Let D be a distribution with mean µ and
variance σ2. Then for any random variable x ∼ D,

Prx [|x− µ| ≥ k · σ] ≤ 1
k2 .

While this is a general result for any probability distribution, we know much stronger results
for some common distributions. In particular for the normal distribution that often seems
a good approximation of the distribution of Fourier coefficients, much stronger bounds
can be proven. More precisely, when considering a normal distribution, the cumulative
distribution function (cdf) results in the well-known 68–95–99.7 rule (or three-sigma rule
of thumb [19]) that says

• 68 % of the probability mass lies within one,

• 95 % lies within two, and

• 99.7 % lies within three standard deviations away from the mean.

The remainder of the section discusses our results for some selected S-boxes, while addi-
tionally all results are given in the appendix.
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Experimental setting
Present is a classical Substitution-Permutation-Network with a 64 bit block size and uses
a substitution layer based on a 4 bit S-box with optimal properties regarding differential
and linear cryptanalysis, together with a bit permutation based linear layer. In [22], the
authors classified all 4 bit S-boxes and found 16 so-called optimal equivalence classes
and 20 Serpent-type equivalence classes.1 While optimal 4 bit S-boxes exhibit the best
uniformity and linearity possible, the notion of Serpent-type S-boxes also include desired
attributes to ensure a higher number of active S-boxes for differential cryptanalysis. The
Present S-box was chosen from one of these Serpent-type equivalence classes.

In order to better understand the behavior of identical round keys, we conducted
extensive experiments with modified Present versions. Our modifications are of the
following form. We substituted the used S-box within the encryption with each of the
optimal representatives O0 to O15 and Serpent-type representatives R0 to R19 given in [22].
Additionally we reduced the encryption to 10 rounds. For each experimental distribution
we then computed the Fourier coefficients of one bit trails for 20 000 independent and
20 000 identical round keys.

Before discussing our results, let us recall some observations of Present. In [29]
Ohkuma has shown that one bit trails dominate the linear hull in the case of Present,
at least for a limited number of rounds. Later, Abdelraheem [1] showed that with an
increasing number of rounds, one has to take into account more trails in order to get good
estimates of the total Fourier coefficient. A one bit trail θ = (θ0, . . . , θr) is a trail, for
which all intermediate masks θi have Hamming weight 1, i. e. wt(θi) = 1.

We build on these findings and run our experiments under the following assumption:

Assumption 1. One bit trails dominate the linear hull of Present.

We discuss the validity of this assumption in the next subsection, cf. Figure 7 and 8.
As we consider a small number of rounds, we can thus approximate the Fourier

coefficient of Present by

Êk(α, γ) =
∑

θ∈(Fn2 )r+1

θ0=α,θr=γ

(−1)〈θ,k〉Cθ ≈
∑
θ

θ0=α,θr=γ
wt(θi)=1

(−1)〈θ,k〉Cθ.

We can exploit this observation in our experiments in two ways. First, as we have
to consider only one bit trails, computing the Fourier coefficient becomes very efficient
compared to computing Fourier coefficients of all trails. The reason for the reduced
complexity is the following. Normally we utilize correlation matrices [18] to compute the
trail’s Fourier coefficient. But as we restrict the trails to one bit masks only, we also
greatly reduce the size of the corresponding correlation matrix. Additionally, we can use
the resulting matrix as an intuitive illustration of the Fourier coefficient-influencing parts
of the cipher. For that purpose, we interpret the correlation matrix restricted to one
bit trails as an adjacency matrix of a graph G. We call G the induced graph. Standard
Present induces the graph depicted in Figure 5. A vertex in G corresponds to a bit in
the cipher’s state, an edge from α to γ to a trail over one round with non-zero Fourier
coefficient. That is, α is connected to γ by an edge if

Ĥ(eα, eγ) 6= 0,

where H denotes the Present round function, and ej the jth unit vector.
Note that finding one bit trails over r rounds now reduces to finding paths in G of

length r. G can be reduced in size, if we discard vertices not covered by paths of length r.
Counting the number of one bit trails from α to γ over r rounds can now simply be done,

1Actually a more general classification was already published in [12]
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Figure 5: Graph induced by Present. Vertices α, γ correspond to possible one bit masks
(eα, eγ) and are thus connected by an edge, if the Fourier coefficient at (eα, eγ) is non-zero.
The highest number of trails is achieved by starting and ending in the marked vertex,
eα = eγ = e21.

by raising the adjacency matrix to the rth power. The resulting element at position (α, γ)
is the number looked for.

Returning to Ohkuma’s observations, the second advantage of this phenomenon is, it
limits the number of keys that result in a different behavior. Consider Equation (2) and
only one bit trails. The key-dependent sign of the Fourier coefficient now depends only on
the few key bits masked by one bit trails. In the case of Present there are actually 27
out of the possible 64 bits of each round key. Thus, significantly fewer key bits influence
the Fourier coefficient, and further, all keys which are equal in these masked bits behave
identically. For some S-boxes, we can then compute the distribution of Fourier coefficients
of one bit trails over all keys.

The induced graph can differ significantly in size for different S-boxes. Figure 6 shows
the graph induced by Present and R1. Compared to standard Present, only 8 of the
originally 27 key bits influence the Fourier coefficient.
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Figure 6: Graph induced by Present and R1. Vertices α, γ correspond to possible one
bit masks (eα, eγ) and are thus connected by an edge, if the Fourier coefficient at (eα, eγ)
is non-zero. The highest number of trails is achieved for (eα = e63, eγ = e42).

Resulting distributions and behavior over several rounds
In our experiments various distributions occur. For some S-boxes we observe the same
behavior as for standard Present. Several other S-boxes exhibit unexpected distributions.
We do not want to cover every individual distribution in detail here, but plots for each
can be found in the appendix. Instead, we concentrate on R1 (cf. Table 1), which actually
is the most interesting example with respect to our initial question, i. e. to study the tails
of the distribution. Figure 7 shows the resulting distribution of one bit Fourier coefficients
for R1, cf. the bar plot. In Figure 8 we plot the cdf, which has the advantage that the
scaling issue of Figure 7 vanishes.

Clearly, the resulting distribution does not follow a normal distribution.
When observing such a different distribution to the expected normal distribution, the

question arises if Ohkuma’s initial observation on Present’s behavior still is correct. That
is, do the one bit trails still dominate the distribution of the Fourier coefficient?

In order to investigate this, we computed the distribution for all two bit trails on top of
the one bit trails. As can be seen in Figure 7 the one bit trails still dominate the general
shape of the distribution. The two bit trails alone roughly follow a normal distribution
with a relative small variance. In total, this has the effect that the two bit trails together
with the one bit trails differ from the one bit trails by changing the isolated discrete
distribution into roughly bell-shaped parts. Thus, we can still see a clear dominance of the
one bit trails in the two bit trail distribution, which supports the underlying assumption.
In particular the tail of the distribution is still far from following the normal distribution.

Most importantly in our context of studying the tails of the distributions, Figure 7
exhibits two deviates “quite far” from the distribution’s mean. Indeed, those outliers are
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Table 1: S-box representative for the equivalence class R1 that is used in our experiments.
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R1(x) 0 3 5 8 6 9 10 7 11 12 14 2 1 15 13 4
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Figure 7: Distribution of Fourier coefficients for Present with R1 S-box, reduced to 10
rounds. Again, Fourier coefficients for the mask (e63, e42) are plotted on the x-axis, the
corresponding number of keys on the y-axis. Note that the plot for two bit trails is plotted
against the right y axis.

more than three standard deviations away from the mean and have a joint probability of
roughly 3 %. For the standardly assumed normal distribution the corresponding probability
to lie outside of 3 · σ is roughly a factor of 10 smaller, i. e. approximately 0.3 %, cf. the
68–95–99.7 rule. Moreover, when assuming independent round keys (which implies a
significantly smaller variance) and a normal distribution, the fraction of keys with an
absolute bias larger than 3 · σ would be roughly 2−25, that is an underestimation by a
factor of roughly 220.

Table 2 summarizes the probabilities of these outliers for ten and twelve rounds.
When increasing the number of rounds further, it can be expected that at some point

the dominance of the one bit trails vanishes, especially when correlation of the one bit
trails drops below 2−n/2. However, for increasing number of rounds, the one bit trails
show a fascinating behavior that we like to shortly elaborate below.

We normalize the Fourier coefficient by the distribution’s standard deviation. For
increasing number of rounds, the above mentioned outliers then converge to four standard
deviations. Recall that for R1, only 28 = 256 keys exhibit distinct Fourier coefficients,
due to the fact that we only consider one bit trails. The outliers cover 16 out of the 256
possible keys, converging to the following distribution Dlim, cf. Figure 9:

Êk(α, γ) ∼ Dlim


−4σ with probability 1

32

0 with probability 15
16

4σ with probability 1
32

.

Thus, this distribution fulfills Tchebysheff’s bound with equality:

256 · Pr
[∣∣∣Êk(α, γ)

∣∣∣ ≥ 4 · σ
]

= 256 ·
(

1
32 + 1

32

)
= 256 · 1

42 = 16.
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Table 2: Probability of outliers deviating more than 3 · σ, or Pr [|X| > 3 · σ], for one and
two bit distributions. For X ∼ N (0, σ), Pr [|X| > 3 · σ] = 0.0027.

Rounds log2 (σ) log2 (σN ) Pr1bit Pr2bit log2 (PrN )
10 −16.50 −17.41 0.03130 0.0343 −25.59
12 −19.76 −21.01 0.03205 0.0342 −40.14

−8 −6 −4 −2 0 2 4 6 8

·1014

0

0.2

0.4

0.6

0.8

1

Fourier coefficient

c
d
f

1 bit ident
2 bit ident
N ident
N indp

Figure 8: Distribution’s cdf of one and two bit Fourier coefficients, and the corresponding
normal distribution for identical and independent round keys.

From our perspective of cipher designers, this is a worst case behavior, as such a distribution
not only exhibits a wider variance, but also shows a maximal fraction of weak keys possible
for a given variance.

Although this resulting distribution is quite contrary to what we typically expect, we
have to keep in mind that identical round keys can per se be insecure due to slide [5],
invariant subspace [23], or nonlinear invariant attacks [30]. Therefore designs usually
involve round constants. The next section takes their influence into account.

While this section points out interesting examples and strange behaviour of the resulting
distributions, we clearly lack insights on what causes those peculiarities exactly. We think
that it is an interesting and challenging task for future research to theoretically explain
our observations. In particular one might ask, why R1 shows such a peculiar behavior
and if there is a connection between the linear approximation table and the resulting
distributions.
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Figure 9: Convergence distribution for Present with R1 S-box and many rounds. Here,
the Fourier coefficient of (e63, e42) is normalized by the standard deviation σ (x-axis),
while the corresponding probability to obtain such a Fourier coefficient is denoted on the
ordinate.

4 Linear Key Schedules

As mentioned above, in cipher design one typically makes use of the hypothesis of inde-
pendent round keys, which states that the analyzed cipher shows a similar behavior when
instantiated with the key schedule or with independent round keys. However, as discussed
in the previous section, this assumption might actually be wrong.

Here we show that for any linear key schedule together with randomly chosen round
constants, those distributions where the variance is significantly larger than for independent
round keys are rare exceptions. That is, we theoretically back-up the use of linear key
schedules as a sound design approach with respect to linear cryptanalysis. Interestingly,
from a technical point of view, this observation is almost trivial.

We consider a key-alternating cipher and analyze the effect of a key schedule that
consists of a linear function followed by the addition of a constant. Thus, the key schedule
KS : F`2 × (Fn2 )r+1 → (Fn2 )r+1 is given as

KS(k, c) = KSc(k) = L(k) + c,

where L : F`2 → (Fn2 )r+1 is a linear function, and c ∈ (Fn2 )(r+1). The constant has the form
c = (c0, . . . , cr), where the ci ∈ Fn2 are called the round constants.

Let us look at the key-alternating cipher r-KeyAlt using the key schedule KSc, that is
r-KeyAltKSc . First, we note that all constants from the same coset of the linear subspace
U = L(F`2) result in the same key schedule up to a permutation. Namely, given two
constants c1 = L(k1) + d and c2 = L(k2) + d, it holds that KSc1(k) = KSc2(k + k1 + k2).
Accordingly, when analyzing the squared Fourier coefficient over the keys, the choice of
the constant c can be reduced to the choice of a coset U + d.

Applying the linear hull theorem (cf. Proposition 3), we can compute the average
squared Fourier coefficient over the keys, that is the variance of the distribution for fixed
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input and output masks (α, γ) as

Var(c) := 2−`
∑
k∈F`2

̂r-KeyAltKSc
k (α, γ)2

= 22n−`
∑

θ,θ′∈(Fn2 )r+1

θ0=θ′
0=α

θr=θ′
r=γ

(−1)〈θ+θ′,c〉CθCθ′

∑
k

(−1)〈θ,L(k)〉+〈θ′,L(k)〉

= 22n−`
∑

θ,θ′∈(Fn2 )r+1

θ0=θ′
0=α

θr=θ′
r=γ

(−1)〈θ+θ′,c〉CθCθ′

∑
k

(−1)〈k,L
T (θ)+LT (θ′)〉

= 22n
∑
θ,θ′

θ0=θ′
0=α

θr=θ′
r=γ

LT (θ)=LT (θ′)

(−1)〈θ+θ′,c〉CθCθ′ .

Next, we look at the average variance over all possible constants c. As discussed above,
except for a factor, this is actually the same as summing over one representative for each
coset. We have

Ec (Var(c)) = 2−(r+1)n
∑

c∈(Fn2 )r+1

Var(c)

= 22n−(r+1)n
∑
c

∑
θ,θ′

θ0=θ′
0=α

θr=θ′
r=γ

LT (θ)=LT (θ′)

(−1)〈θ+θ′,c〉CθCθ′

= 22n−(r+1)n
∑
θ,θ′

θ0=θ′
0=α

θr=θ′
r=γ

LT (θ)=LT (θ′)

CθCθ′

∑
c

(−1)〈θ+θ′,c〉

= 22n
∑
θ

θ0=α
θr=γ

C2
θ .

Thus, the average variance over all constants is the same variance as for independent
round keys.

While this is actually quite clear as in both cases we eventually sum over all possible
2(r+1)n bit round keys, this observation has an important implication for cipher design.

Having a key-alternating cipher, any linear key scheduling can be turned into a key
schedule which is on average as good as having independent round keys (in terms of the
variance of the distribution, and thus in terms of the fraction of weak keys): Simply choose
random round constants.

Known ciphers that actually deploying this approach (for different reasons) include the
low-latency cipher Prince [11] and the cipher LowMC [3].

We conducted experiments on how the distributions actually vary for different choices
of random round constants. As we will see in the following, in this case not only the
variance behaves as in the independent round key set-up, but the whole distribution does.

Experiments
We experimentally verified our results in the same setting as discussed in Section 3.
Figure 10 plots the resulting Fourier coefficient distribution.



Thorsten Kranz, Gregor Leander and Friedrich Wiemer 491

Figure 10: Experimental distributions for Present with different key schedules. The
gray histogram is for independent random round keys. The dashed line is for identical
round keys and an all zero round constant. All other lines, are for identical round keys
and independent random round constants.

The gray histogram in the background represents the distribution for independent
random round keys. It smoothly follows a normal distribution as expected. The dashed line
in the foreground depicts the distribution for identical round keys with an all zero round
constant. This distribution is similar to the independent round key case, but exhibits a
wider variance, as already observed in [2] and discussed in Section 3. According to our
results from above, this behavior must be a clear outlier.

Indeed, all other lines correspond to identical round keys with a random round constant,
and all exhibit the same behavior following a normal distribution. While the plot only shows
256 different round constants, we conducted the same experiment for several thousand
random round constants, each resulting in the same behavior.

5 Linear Approximations of Tweakable Block Ciphers
Tweakable block ciphers, introduced by Liskov et al. [24], are an important cryptographic
primitive. A traditional block cipher takes as input a key and a message and computes
a ciphertext. For each fixed key, the function mapping the message to a ciphertext is a
permutation (to allow decryption) and thus, a block cipher indexed by the key can be
seen as a family of permutations. The idea of a tweakable block cipher is that besides the
key and the message, a tweak is taken as an input. Informally, the intuition is that each
tweak selects a different block cipher, that is a different, unrelated, family of permutations.
While the key is, obviously, assumed to be unknown to an attacker, the tweak, as well
as the message, is usually assumed to be under full control of an adversary. That is, the
adversary is usually allowed to query the tweakable block cipher under a message and tweak
of her choice. Tweakable block ciphers have many important applications, e. g. ciphers
for memory-encryption can use the memory-address as a tweak, further applications are
efficient authenticated encryption and online ciphers.

For a tweakable block cipher the attacker is no longer restricted to linear approximations
from the plaintext to the ciphertext, but can also make use of the tweak. In this section, we
develop a formula for the linear hull of a tweakable block cipher and discuss its implications.
We again develop our formulas in a top-down manner starting with a generic tweakable
block cipher and then looking at the more special cases step by step.

A tweakable block cipher takes as input a key k, a tweak t, and a message x and
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computes the ciphertext c. It can then be written as a function

F : Fn2 × Fm2 → Fn2 ,

where m denotes the tweak size and, for simplicity, we hide the key-dependency in the
function F itself. This means that we do not explicitly mention the key-dependency of F
in our notation.

As in the case of keys, usually real block ciphers do not have independent tweaks, but
rather have a tweak schedule generating the round tweaks. For the tweak schedule

TS : F`2 → Fm2

we define
FTS : Fn2 × F`2 → Fn2

as
FTS(x, t) := F (x,TS(t)).

Analogous to Section 2, we define ETS
t (x) := FTS(x, t).

With the plaintext and the tweak, there are now two public inputs. Accordingly, an
input mask for a linear approximation now consists of two parts, (α, β), the plaintext mask
α and the tweak mask β. The main question is now how to express the Fourier coefficient
of this linear approximation, that is how to compute F̂TS((α, β), γ). While the most basic
case of this linear hull for tweakable block ciphers was already discussed in Equation (3),
one can observe the following relation for a linear tweak schedule:

Proposition 4. With the notation from above, for a linear tweak schedule L, it holds that

F̂L((α, β), γ) = 2`−m
∑
θ∈Fm2

LT (θ)=β

F̂ ((α, θ), γ).

Proof. As we have used the notation of a block cipher in two variables already intensively
in Section 2, we can now reuse the results for tweakable ciphers. Accordingly, the basic
ingredients for the proof are already known from that section. We first apply Equation (3),
then Equation (2) and eventually use some basic summation techniques.

F̂L((α, β), γ) =
∑
t∈F`2

(−1)〈β,t〉ÊLt (α, γ)

= 2−m
∑
t∈F`2

(−1)〈β,t〉
∑
θ∈Fm2

(−1)〈θ,L(t)〉
F̂ ((α, θ), γ)

= 2−m
∑
θ∈Fm2

F̂ ((α, θ), γ)
∑
t∈F`2

(−1)〈β,t〉+〈θ,L(t)〉

= 2−m
∑
θ∈Fm2

F̂ ((α, θ), γ)
∑
t∈F`2

(−1)〈β+LT (θ),t〉

= 2`−m
∑
θ∈Fm2

LT (θ)=β

F̂ ((α, θ), γ)
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In the following, we will consider what we call tweak-alternating ciphers analogous to
key-alternating ciphers. Actually, all tweakable block ciphers we are aware of, including
secondary constructions, are of this form. A tweak-alternating cipher is defined as

r-TweakAlt(x, t) : Fn2 × (Fn2 )r+1 → Fn2
r-TweakAlt(x, t) := Hr−1(. . . H0(x+ t0) + . . .) + tr

with Hi : Fn2 → Fn2 . Analogous to above, the key-dependency is hidden in the round
functions Hi.

Substituting this definition in Proposition 4 and using Lemma 1 directly gives the
following corollary:

Corollary 1.

̂r-TweakAltL((α, β), γ) = 2`−(r+1)n
∑

θ∈(Fn2 )r+1

LT (θ)=β

̂r-TweakAlt((α, θ), γ) = 2`+n
∑

θ∈(Fn2 )r+1

LT (θ)=β
θ0=α,θr=γ

r−1∏
i=0

cHi(θi, θi+1)

Note that we cannot yet write the last product as a trail correlation Cθ at this point
because the influence of the key is still hidden in the round functions Hi. However, looking
at a cipher that is not only tweak-alternating but also key-alternating, we can finally
express the linear hull in terms of the trail correlations.

Corollary 2. Let r-TweakAltL be a tweak-alternating cipher where the round keys k =
(k0, . . . , kr) are added in a key-alternating way. It holds that

̂r-TweakAltL((α, β), γ) = 2`+n
∑
θ

LT (θ)=β
θ0=α,θr=γ

(−1)〈θ,k〉Cθ.

The crucial observation of Proposition 4 is that tweaking a block cipher with a linear
tweak schedule does not introduce any new linear trails. In other words, the tweakable
block cipher’s linear hulls consists of linear trails that already exist in the linear hulls for
the non-tweakable cipher. In the case of Corollary 2, this effect is even more obvious. As
explained in the introduction, this stands in contrast to differential trails, where it might
well be that adding a difference in the tweak leads to new differential characteristics with
a significantly higher probability than any differential characteristic for the non-tweaked
version of the cipher.

In particular, from a designer’s point of view, protecting a tweakable block cipher with
linear tweak schedule against linear cryptanalysis is not more difficult than for non-tweaked
ciphers. In almost all settings, the best one can do as a designer, is to bound the correlation
of single trails. As those trails are valid both for the tweaked as for the non-tweaked version,
no special attention has to be payed to the additional freedom of the attacker. However,
and this is important to note, in a tweakable block cipher, the attacker is potentially able
to collect more data than in a traditional cipher, where the data complexity is clearly
bounded by the block size. Thus, while the bounds are valid for both scenarios, a tweakable
block cipher might require stronger bounds on the correlation of trails in order to argue
its security. Again, the method of obtaining this bound stays the same when moving from
a non-tweaked to a tweakable block cipher.

It is an interesting question how the new degrees of freedom influence the linear hull
in concrete examples. As the linear hull is composed differently than before, it might in
some cases still enable the attacker to run a better linear attack than originally, although
the underlying linear trails have not changed. To this end, future work could consist in
experimentally analyzing and comparing the success of these attacks.
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A Proofs
All proofs involve only basic summation techniques. We nevertheless include each, for the
sake of completeness and their educational purpose. While all propositions can be proven
directly, we only do so for the first proposition. For the following ones, we use well-known
lemmas, which we introduce first. Again, we include these lemmas, because they provide a
valuable set of tools for proofs regarding linear cryptanalysis.

A.1 Tools for Linear Cryptanalysis Proofs
The following lemma was proven by Nyberg [26, Theorem 3].

Lemma 2 (Consecutive Functions).

Given
f : Fn2 × F`2 → Fk2 , g : Fn2 × Fm2 → Fk2 , h : F`2 → Fm2 ,

f(x, y) := g(x, h(y)).
Then

2mf̂((α, β), γ) =
∑
β′∈Fm2

ĝ((α, β′), γ) · ĥ(β, β′).

Proof. We only need the well-known fact that for the dot product it holds:

∑
β∈Fn2

(−1)〈β,x〉 =
{

2n , if x = 0
0 , else

.

Hence:∑
β′∈Fm2

ĝ((α, β′), γ) · ĥ(β, β′) =
∑
β′

∑
x∈Fn2
y∈Fm2

(−1)〈α,x〉+〈β
′,y〉+〈γ,g(x,y)〉∑

z∈F`2

(−1)〈β,z〉+〈β
′,h(z)〉

=
∑
x,y,z

(−1)〈α,x〉+〈β,z〉+〈γ,g(x,y)〉∑
β′

(−1)〈β
′,y+h(z)〉

= 2m
∑
x,z

(−1)〈α,x〉+〈β,z〉+〈γ,g(x,h(z))〉

= 2mf̂((α, β), γ)

The next lemma was discussed by Daemen et al. [18, Eq. (15)].

Lemma 3 (Function Composition).

Given
f : Fn2 → Fk2 , g : Fn2 → Fm2 , h : Fm2 → Fk2 ,

f := h ◦ g
Then

2mf̂(α, γ) =
∑
β∈Fm2

ĝ(α, β) · ĥ(β, γ).
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Proof. ∑
β∈Fm2

ĝ(α, β) · ĥ(β, γ) =
∑
β

∑
x∈Fn2

(−1)〈α,x〉+〈β,g(x)〉∑
y∈Fm2

(−1)〈β,y〉+〈γ,h(y)〉

=
∑
x,y

(−1)〈α,x〉+〈γ,h(y)〉∑
β

(−1)〈β,y+g(x)〉

= 2m
∑
x

(−1)〈α,x〉+〈γ,h(g(x))〉

= 2mf̂(α, γ)

We can easily prove a variant of this lemma for functions with an other, independent
input.

Lemma 4.

Given
f : Fn2 ×

(
F`1

2 × F`2
2

)
→ Fk2 , g : Fn2 × F`1

2 → Fm2 , h : Fm2 × F`2
2 → Fk2 ,

f(x, (y, z)) := h(g(x, y), z).
Then, for β = (β0, β1)

2mf̂((α, β), γ) =
∑
θ∈Fm2

ĝ((α, β0), θ) · ĥ((θ, β1), γ).

Proof.∑
θ∈Fm2

ĝ((α, β0), θ) · ĥ((θ, β1), γ) =
∑
θ

∑
x∈Fn2
z∈F`1

2

(−1)〈α,x〉+〈β0,z〉+〈θ,g(x,z)〉∑
y∈Fm2
z′∈F`2

2

(−1)〈θ,y〉+〈β1,z
′〉+〈γ,h(y,z′)〉

=
∑
x,y

z,z′

(−1)〈α,x〉+〈β0,z〉+〈β1,z
′〉+〈γ,h(y,z′)〉∑

θ

(−1)〈θ,y+g(x,z)〉

= 2m
∑
x,z,z′

(−1)〈α,x〉+〈β0,z〉+〈β1,z
′〉+〈γ,h(g(x,z),z′)〉

= 2mf̂((α, β), γ)

Bogdanov and Rijmen [9, Lemma 1] studied how the XOR operation influences linear
cryptanalysis.

Lemma 5 (XOR at input).

Given
g : Fn2 × Fn2 → Fk2 , and f : Fn2 → Fk2 ,

g(x, y) := f(x+ y).
Then

ĝ((α, β), γ) =
{

2nf̂(α, γ) , if α = β

0 , else
.
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Proof.

ĝ((α, β), γ) =
∑

x,y∈Fn2

(−1)〈α,x〉+〈β,y〉+〈γ,f(x+y)〉

=
∑
x′,y

(−1)〈α,x
′+y〉+〈β,y〉+〈γ,f(x′)〉

=
∑
x′,y

(−1)〈α,x
′〉+〈α,y〉+〈β,y〉+〈γ,f(x′)〉

=
∑
x′

(−1)〈α,x
′〉+〈γ,f(x′)〉∑

y

(−1)〈α+β,y〉

= f̂(α, γ) ·
∑
y

(−1)〈α+β,y〉

=
{

2nf̂(α, γ) , if α = β

0 , else

Lemma 6 (XOR at ouput).

Given
g : Fk2 × Fn2 → Fn2 , and f : Fk2 → Fn2 ,

g(x, y) := f(x) + y.

Then

ĝ((α, β), γ) =
{

2nf̂(α, γ) , if β = γ

0 , else
.

Proof. The proof works analogous to the proof of Lem. 5.

Using the above lemmas, most of the remaining proofs are straightforward.

A.2 Proofs of Propositions 1–3
Proposition 1

We compute directly∑
β

(−1)〈β,k〉F̂ ((α, β), γ) =
∑
β

(−1)〈β,k〉
∑
x,k′

(−1)〈α,x〉+〈β,k
′〉+〈γ,F(x,k′)〉

=
∑
β,x,k′

(−1)〈α,x〉+〈β,k+k′〉+〈γ,Ek′ (x)〉

=
∑
x,k′

(−1)〈α,x〉+〈γ,Ek′ (x)〉∑
β

(−1)〈β,k+k′〉

= 2m
∑
x

(−1)〈α,x〉+〈γ,Ek(x)〉

= 2mÊk(α, γ).
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For the key scheduled variant: EKS
k (x) = FKS(x, k) = F (x,KS(k)). With the first part of

Prop. 1 for the non key scheduled variant we have

2`ÊKS
k (α, γ) =

∑
β

(−1)〈β,k〉F̂KS((α, β), γ),

applying Lem. 2 results in

2`+mÊKS
k (α, γ) =

∑
β,β′

(−1)〈β,k〉K̂S(β, β′)F̂ ((α, β′), γ),

which concludes the proof.

Proposition 2

Recall r-Roundk(x) = Gr−1(. . . (G0(x, k0), . . .), kr−1). With the first part of Prop. 1 for
the non key scheduled variant it holds

2rm ̂r-Roundk(α, γ) =
∑
β

(−1)〈β,k〉F̂ ((α, β), γ).

Applying Lem. 4 iteratively r − 1 times we then get

2rm+(r−1)n ̂r-Roundk(α, γ) =
∑
β

(−1)〈β,k〉
∑
θ

θ0=α,θr=γ

r−1∏
i=0

Ĝi((θi, βi), θi+1).

The key scheduled variant follows from the second part of Prop. 1 and again applying
Lem. 4 iteratively r − 1 times.

Proposition 3

Using Prop. 1, Lem. 6, and Lem. 4 results in

2(2r−1)n ̂r-KeyAltk(α, γ) =
∑
β

βr=γ

(−1)〈β,k〉
∑
θ

θ0=α,θr=γ

r−1∏
i=0

Ĝi((θi, βi), θi+1),

and applying Lem. 5 for each round yields

2(r−1)n ̂r-KeyAltk(α, γ) =
∑
β

β0=α,βr=γ

(−1)〈β,k〉
r−1∏
i=0

Ĥi(βi, βi+1).

The key scheduled variant follows analogously from the second part of Proposition 1.

A.3 Proof of Lemma 1

2−(r+2)nF̂ ((α, β), γ) =


r−1∏
i=0

cHi(βi, βi+1) = Cβ , for (α, γ) = (β0, βr)

0 , else

.
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With Equation (3):

F̂ ((α, β), γ) =
∑
k

(−1)〈β,k〉Êk(α, γ)

=
∑
k

(−1)〈β,k〉

2n
∑
β′

β′
0=α,β′

r=γ

(−1)〈β
′,k〉

r−1∏
i=0

cHi
(
β′i, β

′
i+1
)

= 2n
∑
β′,k

(−1)〈β+β′,k〉
r−1∏
i=0

cHi
(
β′i, β

′
i+1
)

=

2(r+2)n
r−1∏
i=0

cHi
(
β′i, β

′
i+1
)

, for (α, γ) = (β0, βr)

0 , else
.

B Plots for Serpent-type S-boxes
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