Attacks on Lattice Crypto December 7th, 2016

FluxFingers

Workgroup Symmetric Cryptography Ruhr University Bochum

Friedrich Wiemer

RUB

GDATA

Why is Lattice Based Crypto important?

Or interesting? Or...? Buzzword Bingo.

RUB

Some facts

■ It is a Post-Quantum secure Cryptosystem (PQC)

Why is Lattice Based Crypto important? Or interesting? Or...? Buzzword Bingo.

Some facts

- It is a Post-Quantum secure Cryptosystem (PQC)
- It is damn fast (faster than dinosauRS cryptA)

Why is Lattice Based Crypto important? Or interesting? Or...? Buzzword Bingo.

Some facts

- It is a Post-Quantum secure Cryptosystem (PQC)
- It is damn fast (faster than dinosauRS cryptA)
- You can build anything you want from it: Encryption, Signatures, even Hash Functions!

Why is Lattice Based Crypto important? Or interesting? Or...? Buzzword Bingo.

Some facts

- It is a Post-Quantum secure Cryptosystem (PQC)
- It is damn fast (faster than dinosauRS cryptA)
- You can build anything you want from it: Encryption, Signatures, even Hash Functions!
- It allows to build even some of the most advanced cryptographic building blocks:
 - Fully Homomorphic Encryption (FHE),
 - Multi-linear Maps,
 - Identity-based Encryption (IBE),

...

Why is Lattice Based Crypto important? Is everything done?

Fully Homomorphic Encryption

Kirchner/Fouque: our attack lets us do FHE faster by just breaking the crypto & decrypting eprint.iacr.org/2016/717.pdf

The parameters proposed for schemes using similar overstretched NTRU assumption, such as in homomorphic encryption [8, 51] 17, 18, 16, 12, 32, 20] or in private information retrieval [19], are also broken in practical time using LLL. For example, we recovered a decryption key of the FHE described in [17] in only 10 hours. For comparison, they evaluated AES in 29 h: that means that we can more efficiently than the FHE evalution, recover the secret, perform the AES evaluation, and then re-encrypt the result! A decryption key was recovered for [20] in 4 h. Other instanciations such as [11, 29] are harder, but within range of practical cryptanalysis, using BKZ with moderate block-size [13].

LIKES 33 34

5:37 AM - 23 Jul 2016

The new cool kid in town.

What is this Hype?

 "Lattice based Crypto is one of the most promising PQC candidates blablabla" (almost every paper on lattices)

The new cool kid in town.

RUB

What is this Hype?

- "Lattice based Crypto is one of the most promising PQC candidates blablabla" (almost every paper on lattices)
- NSA supported this by announcing the need for PQC [KM15] in 2015

The new cool kid in town.

RUB

What is this Hype?

- "Lattice based Crypto is one of the most promising PQC candidates blablabla" (almost every paper on lattices)
- NSA supported this by announcing the need for PQC [KM15] in 2015
- Alkim et al. won this year's Internet Defense Prize [Fac16] for their lattice based key exchange "New Hope" [Alk+16]

The new cool kid in town.

What is this Hype?

- "Lattice based Crypto is one of the most promising PQC candidates blablabla" (almost every paper on lattices)
- NSA supported this by announcing the need for PQC [KM15] in 2015
- Alkim et al. won this year's Internet Defense Prize [Fac16] for their lattice based key exchange "New Hope" [Alk+16]
- Google even implemented this in Chrome [Goob]

RUB

The new cool kid in town.

What is this Hype?

- "Lattice based Crypto is one of the most promising PQC candidates blablabla" (almost every paper on lattices)
- NSA supported this by announcing the need for PQC [KM15] in 2015
- Alkim et al. won this year's Internet Defense Prize [Fac16] for their lattice based key exchange "New Hope" [Alk+16]
- Google even implemented this in Chrome [Goob]
- So, research is really vibrant here

RUB

Everything was fine. And then Shor entered the stage...

A cryptographic thriller

Everything was fine. And then Shor entered the stage...

A cryptographic thriller

- ... and published an efficient CVP quantum algorithm [ES16]
- for one day the cryptographic community was shocked!

Everything was fine. And then Shor entered the stage...

A cryptographic thriller

- ... and published an efficient CVP quantum algorithm [ES16]
- for one day the cryptographic community was shocked!
- ... and then Regev saved us all by finding a flaw in the paper [Reg]
- but still, Google stopped its PQ key exchange experiment with New Hope [Gooa]

Enough motivation!

How does Lattice Crypto work?

How does Lattice Based Crypto work? Wait! Lattice, wtf?

Definition:

A lattice L is an discrete, additive, abelian subgroup of \mathbb{R}^n .

How does Lattice Based Crypto work? Wait! Lattice, wtf?

Definition:

A lattice L is an discrete, additive, abelian subgroup of \mathbb{R}^n .

Definition:

Let $b_1, b_2, \ldots, b_d \in \mathbb{R}^n, \; d \leqslant n$ linear independent. Then the set

$$L = \left\{ \nu \in \mathbb{R}^n \; \middle| \; \nu = \sum_{i=1}^d a_i b_i, a_i \in \mathbb{Z} \right\}$$

is a lattice.

Hey! You promised, this will be easy!

Lattice, dt.: Gitter

Hey! You promised, this will be easy!

OK, OK, we can say it easier: \mathbb{Z}^2 is a Lattice

Hey! You promised, this will be easy!

OK, OK, we can say it easier: \mathbb{Z}^2 is a Lattice

Hey! You promised, this will be easy! OK, OK, we can say it easier: \mathbb{Z}^2 is a Lattice

RUB

In general, basis reduction is a hard problem! The LLL and BKZ algorithm are available for this. NTL's implementation of BKZ has 2^{n^2} runtime.

Hard Problems in Lattices...

... are what we need for crypto.

Shortest Vector Problem (SVP)

Given a lattice L, what is a shortest vector $\nu \in L \setminus \{0\}$?

Hard Problems in Lattices...

... are what we need for crypto.

Shortest Vector Problem (SVP)

Given a lattice L, what is a shortest vector $\nu \in L \setminus \{0\}$?

Hard Problems in Lattices...

... are what we need for crypto.

Closest Vector Problem (CVP)

Given a lattice L and a target $t \notin L$, what is the closest vector $v \in L$ to t?

Hard Problems in Lattices...

... are what we need for crypto.

Closest Vector Problem (CVP)

Given a lattice L and a target $t \notin L$, what is the closest vector $v \in L$ to t?

Lattice Based Crypto

Learning With Errors - or: the equivalent to textbook RSA

Key Generation¹

¹Thanks to Elena for the nice pictures.

Lattice Based Crypto

Learning With Errors - or: the equivalent to textbook RSA

Encryption

Lattice Based Crypto

Learning With Errors - or: the equivalent to textbook RSA

RUB

Decryption

In practice most efficient strategy is Babai's Nearest Plane [Bab86], improved by Lindner and Peikert [LP11] and Gama *et al.* [GNR10].

Nearest Plane or BDD Enumeration

RUB

Attack

Step 1: Basis Reduction

step1: Find an approximation to sk

Nearest Plane or BDD Enumeration

Step 2: Enumerate Nearest Planes

Parallel Implementation of BDD enumeration for LWE

Finally, what we (joint work with Elena Kirshanova and Alex May) did:

Research Project

- Goal: What is the *practical* runtime of BDD enumeration?
- Build a parallel implementation of NearestPlanes.
- Test this on some large scale parallel system.
- Hopefully break some real world parameters.

Parallelisation of Enumeration

Elena's explanation

Closest point search via depth-first tree-traversal:

t

Parallelisation of Enumeration Elena's explanation

RUB

Closest point search via depth-first tree-traversal:

Parallelisation of Enumeration Elena's explanation

RUB

Closest point search via depth-first tree-traversal:

Parallelisation of Enumeration Elena's explanation

RUB

Closest point search via depth-first tree-traversal:

Parallelisation of Enumeration Elena's explanation

RUB

Closest point search via depth-first tree-traversal:

Parallelisation of Enumeration Elena's explanation

Closest point search via depth-first tree-traversal:

Leaves to visit = $2^{n \log n}$ for n-dim BDD

After more than one year of work, two submissions and something like over 9000 weeks of benchmarking

We ended up with:

After more than one year of work, two submissions and something like over 9000 weeks of benchmarking

We ended up with:

- an open source implementation: https://github.com/pfasante/cvp-enum
- an ACNS paper [KMW16] and a Best Student Paper Award I and a Best Student Paper Award I
- huge table of runtimes

Results: Numbers!

Standard LWE

LWE-parameters			BKZ-reduction	Enumeration	
n	q	$ e \leqslant$	Т	# Threads	Т
90	4093	10	11.3h	1	35h
90	4093	10	11.3h	10	3.6h
100	4093	10	7h	24	2.7h

To be compared with: (n = 192, |e| < 18, q = 4093) reaches 2^{87} -security level [LP11].

Results: Numbers!

LWE variant: Small secret

LWE-parameters			BKZ-reduction	Enumeration	
n	q	m	Т	# Threads	Т
140	16411	170	12h	1	16h
140	16411	170	12h	10	1.7h

To be compared with: $(n = 128, q = 16411, m = 2^{28}, T = 13h)$ for combinatorial attack on LWE [KF15].

Results: Numbers!

LWE variant: Binary matrix

LWE-parameters			BKZ-reduction	Enumeration
n	q	m	Т	Т
256	500009	440	4.5h	2min

To be compared with: Estimation by Galbraith [Gal] roughly one day.

Questions? Thank you for your attention!

Review

- Working as an engineer together with mathematicans can be fun You can code, they... can do math

 ...
- Even if you don't understand what you are implementing, you can get something working out of it
- Eventually you'll understand the math •

RUB

Mainboard & Questionmark Images: flickr

References I

[Alk+16] E. Alkim, L. Ducas, T. Poppelmann, and P. Schwabe, "Post-guantum Key Exchange - A New Hope". In: USENIX Security Symposium. USENIX Association, 2016, pp. 327–343. [Bab86] L. Babai. "On Lovász' lattice reduction and the nearest lattice point problem". In: Combinatorica 6.1 (1986), pp. 1-13. [ES16] L. Eldar and P. W. Shor, "An Efficient Quantum Algorithm for a Variant of the Closest Lattice-Vector Problem". In: arXiv Preprint Archive (2016). URL: https://arxiv.org/abs/1611.06999. [Fac16] Facebook, Internet Defense Prize, 2016, UBL: https://internetdefenseprize.org/. [Gal] S. D. Galbraith. "Space-efficient variants of cryptosystems based on learning with errors". URL: https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf. [GNR10] N. Gama, P. Q. Nguyen, and O. Regev. "Lattice Enumeration Using Extreme Pruning". In: EUROCRYPT, Vol. 6110, Lecture Notes in Computer Science, Springer, 2010, pp. 257–278. [Gooa] Google. CECPQ1 results. URL: https://www.imperialviolet.org/2016/11/28/cecpg1.html.

References II

[Goob] Google. Experimenting with Post-Quntum Cryptography. URL: https://security.googleblog.com/2016/07/experimenting-withpost-quantum.html.

- [KF15] P. Kirchner and P. Fouque. "An Improved BKW Algorithm for LWE with Applications to Cryptography and Lattices". In: CRYPTO (1). Vol. 9215. Lecture Notes in Computer Science. Springer, 2015, pp. 43–62.
- [KM15] N. Koblitz and A. Menezes. "A Riddle Wrapped in an Enigma". In: IACR Cryptology ePrint Archive 2015 (2015), p. 1018.
- [KMW16] E. Kirshanova, A. May, and F. Wiemer. "Parallel Implementation of BDD Enumeration for LWE". In: ACNS. Vol. 9696. Lecture Notes in Computer Science. Springer, 2016, pp. 580–591.
- [LP11] R. Lindner and C. Peikert. "Better Key Sizes (and Attacks) for LWE-Based Encryption". In: CT-RSA. Vol. 6558. Lecture Notes in Computer Science. Springer, 2011, pp. 319–339.
- [Reg] O. Regev. Regarding the arXiv preprint by Eldar and Shor. URL: https://groups.google.com/forum/#!topic/cryptanalyticalgorithms/WNMuTfJuSRc.