
Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Shorter Linear Straight-Line
Programs for MDS Matrices

Yet another XOR Count Paper

Thorsten Kranz1, Gregor Leander1, Ko Stoffelen2,
Friedrich Wiemer1

1Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany

2Digital Security Group, Radboud University, Nijmegen, The Netherlands



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Lightweight Cryptography

Cryptographic systems might have to fulfill special constraints.

Typical Goal
Minimize the chip-area.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Lightweight Cryptography

Cryptographic systems might have to fulfill special constraints.

Typical Goal
Minimize the chip-area.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Linear Layers

Matrix multiplication(s).
Often MDS matrices.


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




x0
x1
x2
x3

 =


y0
y1
y2
y3

 , xi , yi ∈ F28



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Goal: Small round-based implementation


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




x0
x1
x2
x3

 =


y0
y1
y2
y3

 , xi , yi ∈ F28

Combinational
Logic

...
...



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Goal: Small round-based implementation


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




x0
x1
x2
x3

 =


y0
y1
y2
y3

 , xi , yi ∈ F28

Combinational
Logic

...
...



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Metric: XOR count

Implement matrix multiplication only with XOR operations.
Use as few XORs as possible.
Idea: Low XOR count = Low chip-area

Note: No intermediate result needs to be recomputed.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Outline

1 Previous Work

2 Shorter Linear Straight-Line Programs

3 Results



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Outline

1 Previous Work

2 Shorter Linear Straight-Line Programs

3 Results



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

FSE 2018: Jean, Peyrin, Sim, Tourteaux
Optimizing Implementations of Lightweight Building Blocks

FSE 2017: C. Li and Q. Wang
Design of Lightweight Linear Diffusion Layers from Near-MDS Matrices

FSE 2017: Sarkar and Syed
Lightweight Diffusion Layer: Importance of Toeplitz Matrices

CRYPTO 2016: Beierle, Kranz, Leander
Lightweight Multiplication in GF (2n) with Applications to MDS Matrices

FSE 2016: Liu and Sim
Lightweight MDS Generalized Circulant Matrices

FSE 2016: Y. Li and M. Wang
On the Construction of Lightweight Circulant Involutory MDS Matrices

FSE 2015: Sim, Khoo, Oggier, Peyrin
Lightweight MDS Involution Matrices



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

Searching many matrices.

Cauchy, Vandermonde, Circulant, Hadamard,
Hadamard-Cauchy, Toeplitz, Arbitrary
Optimizing element multiplication.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

Searching many matrices.
Cauchy

, Vandermonde, Circulant, Hadamard,
Hadamard-Cauchy, Toeplitz, Arbitrary
Optimizing element multiplication.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

Searching many matrices.
Cauchy, Vandermonde

, Circulant, Hadamard,
Hadamard-Cauchy, Toeplitz, Arbitrary
Optimizing element multiplication.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

Searching many matrices.
Cauchy, Vandermonde, Circulant

, Hadamard,
Hadamard-Cauchy, Toeplitz, Arbitrary
Optimizing element multiplication.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

Searching many matrices.
Cauchy, Vandermonde, Circulant, Hadamard

,
Hadamard-Cauchy, Toeplitz, Arbitrary
Optimizing element multiplication.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

Searching many matrices.
Cauchy, Vandermonde, Circulant, Hadamard,
Hadamard-Cauchy

, Toeplitz, Arbitrary
Optimizing element multiplication.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

Searching many matrices.
Cauchy, Vandermonde, Circulant, Hadamard,
Hadamard-Cauchy, Toeplitz

, Arbitrary
Optimizing element multiplication.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

Searching many matrices.
Cauchy, Vandermonde, Circulant, Hadamard,
Hadamard-Cauchy, Toeplitz, Arbitrary

Optimizing element multiplication.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Work

Searching many matrices.
Cauchy, Vandermonde, Circulant, Hadamard,
Hadamard-Cauchy, Toeplitz, Arbitrary
Optimizing element multiplication.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Counting XORs: Overhead and Fixed Cost

The XOR count is typically split into overhead and
fixed cost.

Matrix Multiplication
α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n




x1
x2
...

xn

 =


y1
y2
...

yn

 , αi,j , xi , yi ∈ F2k

∑
i,j

XOR(αi,j)︸ ︷︷ ︸
Overhead

+ n · (n − 1) · k︸ ︷︷ ︸
Fixed Cost



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Counting XORs: Overhead and Fixed Cost

The XOR count is typically split into overhead and
fixed cost.

Matrix Multiplication
α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n




x1
x2
...

xn

 =


y1
y2
...

yn

 , αi,j , xi , yi ∈ F2k

∑
i,j

XOR(αi,j)︸ ︷︷ ︸
Overhead

+ n · (n − 1) · k︸ ︷︷ ︸
Fixed Cost



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Counting XORs: Overhead and Fixed Cost

The XOR count is typically split into overhead and
fixed cost.

Matrix Multiplication
α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n




x1
x2
...

xn

 =


y1
y2
...

yn

 , αi,j , xi , yi ∈ F2k

∑
i,j

XOR(αi,j)︸ ︷︷ ︸
Overhead

+ n · (n − 1) · k︸ ︷︷ ︸
Fixed Cost



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Counting XORs: Overhead and Fixed Cost

The XOR count is typically split into overhead and
fixed cost.

Matrix Multiplication
α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n




x1
x2
...

xn

 =


y1
y2
...

yn

 , αi,j , xi , yi ∈ F2k

∑
i,j

XOR(αi,j)︸ ︷︷ ︸
Overhead

+ n · (n − 1) · k︸ ︷︷ ︸
Fixed Cost



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Counting XORs: Overhead and Fixed Cost

The XOR count is typically split into overhead and
fixed cost.

Matrix Multiplication
α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n




x1
x2
...

xn

 =


y1
y2
...

yn

 , αi,j , xi , yi ∈ F2k

∑
i,j

XOR(αi,j)︸ ︷︷ ︸
Overhead

+ n · (n − 1) · k︸ ︷︷ ︸
Fixed Cost



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Counting XORs: Overhead and Fixed Cost

The XOR count is typically split into overhead and
fixed cost.

Matrix Multiplication
α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n




x1
x2
...

xn

 =


y1
y2
...

yn

 , αi,j , xi , yi ∈ F2k

∑
i,j

XOR(αi,j)︸ ︷︷ ︸
Overhead

+ n · (n − 1) · k︸ ︷︷ ︸
Fixed Cost



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Counting XORs: Overhead and Fixed Cost

The XOR count is typically split into overhead and
fixed cost.

Matrix Multiplication
α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n




x1
x2
...

xn

 =


y1
y2
...

yn

 , αi,j , xi , yi ∈ F2k

∑
i,j

XOR(αi,j)︸ ︷︷ ︸
Overhead

+ n · (n − 1) · k︸ ︷︷ ︸
Fixed Cost



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Counting XORs: Overhead and Fixed Cost

The XOR count is typically split into overhead and
fixed cost.

Matrix Multiplication
α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n




x1
x2
...

xn

 =


y1
y2
...

yn

 , αi,j , xi , yi ∈ F2k

∑
i,j

XOR(αi,j)︸ ︷︷ ︸
Overhead

+ n · (n − 1) · k︸ ︷︷ ︸
Fixed Cost



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Results

Table: Best XOR counts of previous work. Matrices in the lower half
are involutory.

Dimension S-box XOR count

4× 4 4 bit 10 + 48
4× 4 8 bit 10 + 96
8× 8 4 bit 160 + 224
8× 8 8 bit 192 + 448

4× 4 4 bit 15 + 48
4× 4 8 bit 30 + 96
8× 8 4 bit 200 + 224
8× 8 8 bit 288 + 448



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Previous Results

Table: Best XOR counts of previous work. Matrices in the lower half
are involutory.

Dimension S-box XOR count

4× 4 4 bit 58
4× 4 8 bit 106
8× 8 4 bit 384
8× 8 8 bit 640

4× 4 4 bit 63
4× 4 8 bit 126
8× 8 4 bit 424
8× 8 8 bit 736



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Outline

1 Previous Work

2 Shorter Linear Straight-Line Programs

3 Results



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Local Optimization

Optimize k × k matrix over F2.

M =


α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n

 , αi,j ∈ F2k



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Global Optimization

Optimize nk × nk matrix over F2.

M =


α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n

 , αi,j ∈ F2k



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Global Optimization

BFA 2017: Boyar, Find, Peralta
Low-Depth, Low-Size Circuits for Cryptographic Applications

ePrint 2017: Visconti, Schiavo, Peralta
Improved upper bounds for the expected circuit complexity of dense
systems of linear equations over GF(2)

JoC 2013: Boyar, Matthews, Peralta
Logic Minimization Techniques with Applications to Cryptology

SAT 2010: Fuhs, Schneider-Kamp
Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using
SAT

IWIL 2010: Fuhs, Schneider-Kamp
Optimizing the AES S-Box using SAT

MFCS 2008: Boyar, Matthews, Peralta
On the Shortest Linear Straight-Line Program for Computing Linear
Forms

ISIT 1997: Paar
Optimized Arithmetic for Reed-Solomon Encoders



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Global Optimization

Lots of work about implementing binary matrices with few
XORs.
Goal: Find Shortest Linear Straight-Line Programs.

Equivalent to our goal!
(Hardware implementation with lowest XOR count.)



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Global Optimization

Lots of work about implementing binary matrices with few
XORs.
Goal: Find Shortest Linear Straight-Line Programs.

Equivalent to our goal!
(Hardware implementation with lowest XOR count.)



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Global Optimization

BFA 2017: Boyar, Find, Peralta
Low-Depth, Low-Size Circuits for Cryptographic Applications

ePrint 2017: Visconti, Schiavo, Peralta
Improved upper bounds for the expected circuit complexity of dense
systems of linear equations over GF(2)

JoC 2013: Boyar, Matthews, Peralta
Logic Minimization Techniques with Applications to Cryptology

SAT 2010: Fuhs, Schneider-Kamp
Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using
SAT

IWIL 2010: Fuhs, Schneider-Kamp
Optimizing the AES S-Box using SAT

MFCS 2008: Boyar, Matthews, Peralta
On the Shortest Linear Straight-Line Program for Computing Linear
Forms

ISIT 1997: Paar
Optimized Arithmetic for Reed-Solomon Encoders



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Find most common subexpression.
Add according computation to the program.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


a0 + a2 + a3
a0 + a1 + a2

a0 + a1 + a2 + a3
a1 + a2 + a3





Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


a0 + a2 + a3
a0 + a1 + a2

a0 + a1 + a2 + a3
a1 + a2 + a3





Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


(a0 + a2) + a3
(a0 + a2) + a1

(a0 + a2) + a1 + a3
a1 + a2 + a3


x0 = a0 + a2



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example 
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x0 + a3
x0 + a1

x0 + a1 + a3
a1 + a2 + a3


x0 = a0 + a2



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example 
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x0 + a3
x0 + a1

x0 + a1 + a3
a1 + a2 + a3


x0 = a0 + a2



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example 
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x0 + a3
x0 + a1

x0 + a1 + a3
a1 + a2 + a3


x0 = a0 + a2



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example 
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x0 + a3
(x0 + a1)

(x0 + a1) + a3
a1 + a2 + a3


x0 = a0 + a2
x1 = x0 + a1



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example 
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x0 + a3

x1
x1 + a3

a1 + a2 + a3


x0 = a0 + a2
x1 = x0 + a1



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example 
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x0 + a3

x1
x1 + a3

a1 + a2 + a3


x0 = a0 + a2
x1 = x0 + a1



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example 
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x3
x1
x4
x6


x0 = a0 + a2
x1 = x0 + a1
x2 = a1 + a2
x3 = x0 + a3
x4 = x1 + a3
x5 = x2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x3 = a0 + a2 + a3
x1 = a0 + a1 + a2

x4 = a0 + a1 + a2 + a3
x5 = a1 + a2 + a3


x0 = a0 + a2
x1 = x0 + a1 = a0 + a1 + a2
x2 = a1 + a2
x3 = x0 + a3 = a0 + a2 + a3
x4 = x1 + a3 = a0 + a1 + a2 + a3
x5 = x2 + a3 = a1 + a2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Algorithm 1 (Paar 1997)

Table: New XOR counts for matrices from previous work. Matrices in
the lower half are involutory.

Dimension S-box Previously best New results

4× 4 4 bit 58 46
4× 4 8 bit 106 102
8× 8 4 bit 384 210
8× 8 8 bit 640 464

4× 4 4 bit 63 51
4× 4 8 bit 126 102
8× 8 4 bit 424 222
8× 8 8 bit 736 620



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

More advanced heuristics

There exists many follow-up work.
More sophisticated algorithms.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


a0 + a2 + a3
a0 + a1 + a2

a0 + a1 + a2 + a3
a1 + a2 + a3


x0 = a0 + a1
x1 = x0 + a2 = a0 + a1 + a2
x2 = x1 + a3 = a0 + a1 + a2 + a3
x3 = x2 + a1 = a0 + a2 + a3
x4 = x2 + a0 = a1 + a2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

More advanced heuristics

There exists many follow-up work.
More sophisticated algorithms.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


a0 + a2 + a3
a0 + a1 + a2

a0 + a1 + a2 + a3
a1 + a2 + a3



x0 = a0 + a1
x1 = x0 + a2 = a0 + a1 + a2
x2 = x1 + a3 = a0 + a1 + a2 + a3
x3 = x2 + a1 = a0 + a2 + a3
x4 = x2 + a0 = a1 + a2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

More advanced heuristics

There exists many follow-up work.
More sophisticated algorithms.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


a0 + a2 + a3
a0 + a1 + a2

a0 + a1 + a2 + a3
a1 + a2 + a3


x0 = a0 + a1

x1 = x0 + a2 = a0 + a1 + a2
x2 = x1 + a3 = a0 + a1 + a2 + a3
x3 = x2 + a1 = a0 + a2 + a3
x4 = x2 + a0 = a1 + a2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

More advanced heuristics

There exists many follow-up work.
More sophisticated algorithms.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


a0 + a2 + a3
a0 + a1 + a2

a0 + a1 + a2 + a3
a1 + a2 + a3


x0 = a0 + a1
x1 = x0 + a2 = a0 + a1 + a2

x2 = x1 + a3 = a0 + a1 + a2 + a3
x3 = x2 + a1 = a0 + a2 + a3
x4 = x2 + a0 = a1 + a2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

More advanced heuristics

There exists many follow-up work.
More sophisticated algorithms.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


a0 + a2 + a3
a0 + a1 + a2

a0 + a1 + a2 + a3
a1 + a2 + a3


x0 = a0 + a1
x1 = x0 + a2 = a0 + a1 + a2
x2 = x1 + a3 = a0 + a1 + a2 + a3

x3 = x2 + a1 = a0 + a2 + a3
x4 = x2 + a0 = a1 + a2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

More advanced heuristics

There exists many follow-up work.
More sophisticated algorithms.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


a0 + a2 + a3
a0 + a1 + a2

a0 + a1 + a2 + a3
a1 + a2 + a3


x0 = a0 + a1
x1 = x0 + a2 = a0 + a1 + a2
x2 = x1 + a3 = a0 + a1 + a2 + a3
x3 = x2 + a1 = a0 + a2 + a3

x4 = x2 + a0 = a1 + a2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

More advanced heuristics

There exists many follow-up work.
More sophisticated algorithms.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


a0 + a2 + a3
a0 + a1 + a2

a0 + a1 + a2 + a3
a1 + a2 + a3


x0 = a0 + a1
x1 = x0 + a2 = a0 + a1 + a2
x2 = x1 + a3 = a0 + a1 + a2 + a3
x3 = x2 + a1 = a0 + a2 + a3
x4 = x2 + a0 = a1 + a2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

More advanced heuristics

There exists many follow-up work.
More sophisticated algorithms.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x3 = a0 + a2 + a3
x1 = a0 + a1 + a2

x2 = a0 + a1 + a2 + a3
x4 = a1 + a2 + a3


x0 = a0 + a1
x1 = x0 + a2 = a0 + a1 + a2
x2 = x1 + a3 = a0 + a1 + a2 + a3
x3 = x2 + a1 = a0 + a2 + a3
x4 = x2 + a0 = a1 + a2 + a3



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Outline

1 Previous Work

2 Shorter Linear Straight-Line Programs

3 Results



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Improved Implementations

We applied the heuristics to

matrices from previous work
matrices known from block ciphers and hash functions

Could always find improved implementations (lower XOR
count).
Including AES MixColumns implementation with 97 XORs.
(So far 103 was best.)



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Improved Implementations

We applied the heuristics to
matrices from previous work

matrices known from block ciphers and hash functions

Could always find improved implementations (lower XOR
count).
Including AES MixColumns implementation with 97 XORs.
(So far 103 was best.)



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Improved Implementations

We applied the heuristics to
matrices from previous work
matrices known from block ciphers and hash functions

Could always find improved implementations (lower XOR
count).
Including AES MixColumns implementation with 97 XORs.
(So far 103 was best.)



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Improved Implementations

We applied the heuristics to
matrices from previous work
matrices known from block ciphers and hash functions

Could always find improved implementations (lower XOR
count).

Including AES MixColumns implementation with 97 XORs.
(So far 103 was best.)



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Improved Implementations

We applied the heuristics to
matrices from previous work
matrices known from block ciphers and hash functions

Could always find improved implementations (lower XOR
count).
Including AES MixColumns implementation with 97 XORs.
(So far 103 was best.)



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Statistical Analysis

Analyzed different constructions
Cauchy, Circulant, Hadamard, Toeplitz, Vandermonde,
Arbitrary

No construction was superior.
Exception: Subfield Construction

Good strategy

Using subfield construction with best results from smaller S-box
size.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Statistical Analysis

Analyzed different constructions
Cauchy, Circulant, Hadamard, Toeplitz, Vandermonde,
Arbitrary
No construction was superior.
Exception: Subfield Construction

Good strategy

Using subfield construction with best results from smaller S-box
size.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Statistical Analysis

Analyzed different constructions
Cauchy, Circulant, Hadamard, Toeplitz, Vandermonde,
Arbitrary
No construction was superior.
Exception: Subfield Construction

Good strategy

Using subfield construction with best results from smaller S-box
size.



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

New Results

Table: New best XOR counts compared to previous work. Matrices in
the lower half are involutory.

Dimension S-box Previously best New best

4× 4 4 bit 58 36
4× 4 8 bit 106 72
8× 8 4 bit 384 196
8× 8 8 bit 640 392

4× 4 4 bit 63 42
4× 4 8 bit 126 84
8× 8 4 bit 424 212
8× 8 8 bit 736 424



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

New Results

Table: New best XOR counts compared to previous work. Matrices in
the lower half are involutory.

Dimension S-box Previously best New best

4× 4 4 bit 10 + 48 −12 + 48
4× 4 8 bit 10 + 96 −24 + 96
8× 8 4 bit 160 + 224 −28 + 224
8× 8 8 bit 192 + 448 −56 + 448

4× 4 4 bit 15 + 48 −6 + 48
4× 4 8 bit 30 + 96 −12 + 96
8× 8 4 bit 200 + 224 −12 + 224
8× 8 8 bit 288 + 448 −24 + 448



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Conclusion

Take Home Messages

Optimize globally rather than locally.
Stop thinking in overhead and fixed cost.
Use the existing heuristics.
Not necessary to restrict to matrices over finite fields.

https://github.com/pfasante/shorter_linear_slps_for_mds_matrices

Any Questions?



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Conclusion

Take Home Messages

Optimize globally rather than locally.
Stop thinking in overhead and fixed cost.
Use the existing heuristics.
Not necessary to restrict to matrices over finite fields.

https://github.com/pfasante/shorter_linear_slps_for_mds_matrices

Any Questions?


	Motivation
	Previous Work
	Shorter Linear Straight-Line Programs
	Results
	Conclusion

