Shorter Linear Straight-Line Programs

Results

(日) (日) (日) (日) (日) (日) (日)

Conclusion

Shorter Linear Straight-Line Programs for MDS Matrices Yet another XOR Count Paper

<u>Thorsten Kranz</u>¹, Gregor Leander¹, Ko Stoffelen², Friedrich Wiemer¹

¹Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany ²Digital Security Group, Radboud University, Nijmegen, The Netherlands

Motivation ●0000	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion o

Lightweight Cryptography

Cryptographic systems might have to fulfill special constraints.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

 Motivation
 Previous Work
 Shorter Linear Straight-Line Programs
 Results
 Conclusion

 •0000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000
 •00000

Lightweight Cryptography

Cryptographic systems might have to fulfill special constraints.

Typical Goal Minimize the chip-area.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Motivation o●ooo	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion O
Linear L	avers			

- Matrix multiplication(s).
- Often MDS matrices.

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix}, \quad x_i, y_i \in \mathbb{F}_{2^8}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
00000				

Goal: Small round-based implementation

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix}, \quad x_i, y_i \in \mathbb{F}_{2^8}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めん⊙

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
00000				

Goal: Small round-based implementation

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

N A 1 1 1				
Motivation 000●0	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion o

Metric: XOR count

- Implement matrix multiplication only with XOR operations.
- Use as few XORs as possible.
- Idea: Low XOR count = Low chip-area
- Note: No intermediate result needs to be recomputed.

Motivation 0000●	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion o
Outline				

2 Shorter Linear Straight-Line Programs

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
00000	•oooooooooooooooo		00000	O
Outline				

1 Previous Work

2 Shorter Linear Straight-Line Programs

3 Results

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
00000	o●ooooooooooo		00000	o
Previo	us Work			

- FSE 2018: Jean, Peyrin, Sim, Tourteaux Optimizing Implementations of Lightweight Building Blocks
- FSE 2017: C. Li and Q. Wang Design of Lightweight Linear Diffusion Layers from Near-MDS Matrices
- FSE 2017: Sarkar and Syed Lightweight Diffusion Layer: Importance of Toeplitz Matrices
- CRYPTO 2016: Beierle, Kranz, Leander Lightweight Multiplication in GF(2ⁿ) with Applications to MDS Matrices
- FSE 2016: Liu and Sim Lightweight MDS Generalized Circulant Matrices
- FSE 2016: Y. Li and M. Wang On the Construction of Lightweight Circulant Involutory MDS Matrices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 FSE 2015: Sim, Khoo, Oggier, Peyrin Lightweight MDS Involution Matrices

Motivation	Previous Work oo●oooooooooo	Shorter Linear Straight-Line Programs	Results 00000	Conclusion O
Previou	s Work			

• Searching many matrices.

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion o
Previo	us Work			

• Searching many matrices. *Cauchy*

Motivation	Previous Work oo●oooooooooo	Shorter Linear Straight-Line Programs	Results 00000	Conclusion O
Previo	us Work			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Searching many matrices. *Cauchy, Vandermonde*

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion O
Previou	is Work			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Searching many matrices. *Cauchy, Vandermonde, Circulant*

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion O
Previou	is Work			

• Searching many matrices. Cauchy, Vandermonde, Circulant, Hadamard

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion O
Previo	us Work			

 Searching many matrices. Cauchy, Vandermonde, Circulant, Hadamard, Hadamard-Cauchy

Motivation	Previous Work oo●oooooooooo	Shorter Linear Straight-Line Programs	Results	Conclusion o
Previo	us Work			

 Searching many matrices. Cauchy, Vandermonde, Circulant, Hadamard, Hadamard-Cauchy, Toeplitz

Motivation	Previous Work oo●oooooooooo	Shorter Linear Straight-Line Programs	Results	Conclusion o
Previo	us Work			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Searching many matrices. Cauchy, Vandermonde, Circulant, Hadamard, Hadamard-Cauchy, Toeplitz, Arbitrary

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion o
Previou	is Work			

- Searching many matrices. Cauchy, Vandermonde, Circulant, Hadamard, Hadamard-Cauchy, Toeplitz, Arbitrary
- Optimizing element multiplication.

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
	000000000000			

The XOR count is typically split into <u>overhead</u> and <u>fixed cost</u>.

Matrix Multiplication

$$\begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \dots & \alpha_{1,n} \\ \alpha_{2,1} & & & \\ \vdots & & \ddots & \\ \alpha_{n,1} & & & \alpha_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \alpha_{i,j}, x_i, y_i \in \mathbb{F}_{2^k}$$

$$\underbrace{\sum_{i,j} \text{XOR}(\alpha_{i,j})}_{\text{Overhead}} + \underbrace{n \cdot (n-1) \cdot k}_{\text{Fixed Cost}}$$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
	000000000000			

The XOR count is typically split into <u>overhead</u> and <u>fixed cost</u>.

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
	000000000000			

The XOR count is typically split into <u>overhead</u> and <u>fixed cost</u>.

$$\underbrace{\sum_{i,j} \text{XOR}(\alpha_{i,j})}_{\text{Overhead}} + \underbrace{n \cdot (n-1) \cdot k}_{\text{Fixed Cost}}$$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
	000000000000			

The XOR count is typically split into <u>overhead</u> and <u>fixed cost</u>.

$$\underbrace{\sum_{i,j} \text{XOR}(\alpha_{i,j})}_{\text{Overhead}} + \underbrace{n \cdot (n-1) \cdot k}_{\text{Fixed Cost}}$$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
	0000000000000			

The XOR count is typically split into <u>overhead</u> and <u>fixed cost</u>.

$$\underbrace{\sum_{i,j} \text{XOR}(\alpha_{i,j})}_{\text{Overhead}} + \underbrace{n \cdot (n-1) \cdot k}_{\text{Fixed Cost}}$$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
	0000000000000			

The XOR count is typically split into <u>overhead</u> and <u>fixed cost</u>.

$$\underbrace{\sum_{i,j} \text{XOR}(\alpha_{i,j})}_{\text{Overhead}} + \underbrace{n \cdot (n-1) \cdot k}_{\text{Fixed Cost}}$$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
	00000000000000			

The XOR count is typically split into <u>overhead</u> and <u>fixed cost</u>.

Matrix Multiplication

$$\begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \dots & \alpha_{1,n} \\ \alpha_{2,1} & & & \\ \vdots & & \ddots & \\ \alpha_{n,1} & & & \alpha_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \alpha_{i,j}, x_i, y_i \in \mathbb{F}_{2^k}$$

$$\underbrace{\sum_{i,j} \text{XOR}(\alpha_{i,j})}_{\text{Overhead}} + \underbrace{n \cdot (n-1) \cdot h}_{\text{Fixed Cost}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
	00000000000000			

The XOR count is typically split into <u>overhead</u> and <u>fixed cost</u>.

Matrix Multiplication

$$\begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \dots & \alpha_{1,n} \\ \alpha_{2,1} & & & \\ \vdots & & \ddots & \\ \alpha_{n,1} & & & \alpha_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \alpha_{i,j}, x_i, y_i \in \mathbb{F}_{2^k}$$

$$\underbrace{\sum_{i,j} \text{XOR}(\alpha_{i,j})}_{\text{Overhead}} + \underbrace{n \cdot (n-1) \cdot k}_{\text{Fixed Cost}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Motivation	Previous Work ooooooooooooooooo	Shorter Linear Straight-Line Programs	Results 00000	Conclusion o
Previou	s Results			

Table: Best XOR counts of previous work. Matrices in the lower half are involutory.

Dimension	S-box	XOR count
4 × 4	4 bit	10 + 48
4 imes 4	8 bit	10 + 96
8 imes 8	4 bit	160 + 224
8 imes 8	8 bit	192+448
4 × 4	4 bit	15 + 48
4 imes 4	8 bit	30+96
8 × 8	4 bit	200 + 224
8 imes 8	8 bit	288 + 448

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion o
Previous	s Results			

Table: Best XOR counts of previous work. Matrices in the lower half are involutory.

Dimension	S-box	XOR count
4 × 4	4 bit	58
4×4	8 bit	106
8 imes 8	4 bit	384
8 imes 8	8 bit	640
4 × 4	4 bit	63
4×4	8 bit	126
8 imes 8	4 bit	424
8 imes 8	8 bit	736

00000	0000000000000	●000000000000000000000000000000000000	00000	0
Outline				

2 Shorter Linear Straight-Line Programs

3 Results

・ロ・・雪・・雪・・白・

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion o
Local (Dotimization			

Optimize $k \times k$ matrix over \mathbb{F}_2 .

$$\boldsymbol{M} = \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \dots & \alpha_{1,n} \\ \alpha_{2,1} & & & \\ \vdots & \ddots & \\ \alpha_{n,1} & & & \alpha_{n,n} \end{pmatrix}, \quad \alpha_{i,j} \in \mathbb{F}_{2^k}$$

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion o
Global	Optimization	J		

Optimize $nk \times nk$ matrix over \mathbb{F}_2 .

$$\boldsymbol{M} = \begin{pmatrix} \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \cdots & \alpha_{1,n} \\ \alpha_{2,1} & & & \\ \vdots & & \ddots & \\ \alpha_{n,1} & & & \alpha_{n,n} \end{bmatrix}, \quad \alpha_{i,j} \in \mathbb{F}_{2^k}$$

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion o
Global C	Optimization			

- **BFA 2017:** Boyar, Find, Peralta Low-Depth, Low-Size Circuits for Cryptographic Applications
- ePrint 2017: Visconti, Schiavo, Peralta Improved upper bounds for the expected circuit complexity of dense systems of linear equations over GF(2)
- JoC 2013: Boyar, Matthews, Peralta Logic Minimization Techniques with Applications to Cryptology
- SAT 2010: Fuhs, Schneider-Kamp Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using SAT
- IWIL 2010: Fuhs, Schneider-Kamp Optimizing the AES S-Box using SAT
- MFCS 2008: Boyar, Matthews, Peralta On the Shortest Linear Straight-Line Program for Computing Linear Forms
- ISIT 1997: Paar
 Optimized Arithmetic for Reed-Solomon Encoders

Motivation Previous Work

Shorter Linear Straight-Line Programs

Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion

Global Optimization

- Lots of work about implementing binary matrices with few XORs.
- Goal: Find Shortest Linear Straight-Line Programs.

Previous Work

Shorter Linear Straight-Line Programs

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion o

Global Optimization

- Lots of work about implementing binary matrices with few XORs.
- Goal: Find Shortest Linear Straight-Line Programs.
- Equivalent to our goal! (Hardware implementation with lowest XOR count.)

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion o
Global C	Optimization			

- **BFA 2017:** Boyar, Find, Peralta Low-Depth, Low-Size Circuits for Cryptographic Applications
- ePrint 2017: Visconti, Schiavo, Peralta Improved upper bounds for the expected circuit complexity of dense systems of linear equations over GF(2)
- JoC 2013: Boyar, Matthews, Peralta Logic Minimization Techniques with Applications to Cryptology
- SAT 2010: Fuhs, Schneider-Kamp Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using SAT
- IWIL 2010: Fuhs, Schneider-Kamp Optimizing the AES S-Box using SAT
- MFCS 2008: Boyar, Matthews, Peralta On the Shortest Linear Straight-Line Program for Computing Linear Forms
- ISIT 1997: Paar
 Optimized Arithmetic for Reed-Solomon Encoders

Previous Work

Shorter Linear Straight-Line Programs

Results

Conclusion o

Algorithm 1 (Paar 1997)

- Find most common subexpression.
- Add according computation to the program.

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_0 + a_2 + a_3 \\ a_0 + a_1 + a_2 \\ a_0 + a_1 + a_2 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

・ロト・西ト・ヨト・ヨー ひゃぐ

Previous Work

Shorter Linear Straight-Line Programs

Results

Conclusion o

Algorithm 1 (Paar 1997)

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_0 + a_2 + a_3 \\ a_0 + a_1 + a_2 \\ a_0 + a_1 + a_2 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Previous Work

Shorter Linear Straight-Line Programs

Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion o

Algorithm 1 (Paar 1997)

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} (a_0 + a_2) + a_3 \\ (a_0 + a_2) + a_1 \\ (a_0 + a_2) + a_1 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

 $x_0 = a_0 + a_2$

Previous Work

Shorter Linear Straight-Line Programs

Results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion o

Algorithm 1 (Paar 1997)

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x_0 + a_3 \\ x_0 + a_1 \\ x_0 + a_1 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

 $\mathbf{x}_0 = \mathbf{a}_0 + \mathbf{a}_2$

Previous Work

Shorter Linear Straight-Line Programs

Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion o

Algorithm 1 (Paar 1997)

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x_0 + a_3 \\ x_0 + a_1 \\ x_0 + a_1 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

 $x_0 = a_0 + a_2$

Previous Work

Shorter Linear Straight-Line Programs

Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusion o

Algorithm 1 (Paar 1997)

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x_0 + a_3 \\ x_0 + a_1 \\ x_0 + a_1 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

 $x_0 = a_0 + a_2$

Previous Work

Shorter Linear Straight-Line Programs

Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusion o

Algorithm 1 (Paar 1997)

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x_0 + a_3 \\ (x_0 + a_1) \\ (x_0 + a_1) + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

 $x_0 = a_0 + a_2$ $x_1 = x_0 + a_1$

Previous Work

Shorter Linear Straight-Line Programs

Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusion o

Algorithm 1 (Paar 1997)

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x_0 + a_3 \\ x_1 \\ x_1 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

 $x_0 = a_0 + a_2$ $x_1 = x_0 + a_1$

Previous Work

Shorter Linear Straight-Line Programs

Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusion o

Algorithm 1 (Paar 1997)

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x_0 + a_3 \\ x_1 \\ x_1 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

 $x_0 = a_0 + a_2$ $x_1 = x_0 + a_1$

Previous Work

Shorter Linear Straight-Line Programs

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Algorithm 1 (Paar 1997)

Example $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x_3 \\ x_1 \\ x_4 \\ x_6 \end{pmatrix}$

 $x_{0} = a_{0} + a_{2}$ $x_{1} = x_{0} + a_{1}$ $x_{2} = a_{1} + a_{2}$ $x_{3} = x_{0} + a_{3}$ $x_{4} = x_{1} + a_{3}$ $x_{5} = x_{2} + a_{3}$

Previous Work

Shorter Linear Straight-Line Programs

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion o

Algorithm 1 (Paar 1997)

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x_3 = a_0 + a_2 + a_3 \\ x_1 = a_0 + a_1 + a_2 \\ x_4 = a_0 + a_1 + a_2 + a_3 \\ x_5 = a_1 + a_2 + a_3 \end{pmatrix}$$

 $x_{0} = a_{0} + a_{2}$ $x_{1} = x_{0} + a_{1} = a_{0} + a_{1} + a_{2}$ $x_{2} = a_{1} + a_{2}$ $x_{3} = x_{0} + a_{3} = a_{0} + a_{2} + a_{3}$ $x_{4} = x_{1} + a_{3} = a_{0} + a_{1} + a_{2} + a_{3}$ $x_{5} = x_{2} + a_{3} = a_{1} + a_{2} + a_{3}$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion o
A 1	 4 (D	1007)		

Algorithm 1 (Paar 1997)

Table: New XOR counts for matrices from previous work. Matrices in the lower half are involutory.

Dimension	S-box	Previously best	New results
4 × 4	4 bit	58	46
4×4	8 bit	106	102
8 imes 8	4 bit	384	210
8 × 8	8 bit	640	464
4 × 4	4 bit	63	51
4×4	8 bit	126	102
8 imes 8	4 bit	424	222
8 × 8	8 bit	736	620

00000	0000000000000	000000000000000000000000000000000000000	00000			
Motivation	Iotivation Previous Work 00000 000000000000	Shorter Linear Straight-Line Programs	Results	Conclusion		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- More advanced heuristics
 - There exists many follow-up work.
 - More sophisticated algorithms.

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
		000000000000000000000000000000000000000		

- There exists many follow-up work.
- More sophisticated algorithms.

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_0 + a_2 + a_3 \\ a_0 + a_1 + a_2 \\ a_0 + a_1 + a_2 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
		000000000000000000000000000000000000000		

- There exists many follow-up work.
- More sophisticated algorithms.

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_0 + a_2 + a_3 \\ a_0 + a_1 + a_2 \\ a_0 + a_1 + a_2 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $x_0 = a_0 + a_1$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
		000000000000000000000000000000000000000		

- There exists many follow-up work.
- More sophisticated algorithms.

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_0 + a_2 + a_3 \\ a_0 + a_1 + a_2 \\ a_0 + a_1 + a_2 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $x_0 = a_0 + a_1$ $x_1 = x_0 + a_2 = a_0 + a_1 + a_2$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
		000000000000000000000000000000000000000		

- There exists many follow-up work.
- More sophisticated algorithms.

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_0 + a_2 + a_3 \\ a_0 + a_1 + a_2 \\ a_0 + a_1 + a_2 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

$$egin{array}{ll} x_0 &= a_0 + a_1 \ x_1 &= x_0 + a_2 = a_0 + a_1 + a_2 \ x_2 &= x_1 + a_3 = a_0 + a_1 + a_2 + a_3 \end{array}$$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
		000000000000000000000000		

- There exists many follow-up work.
- More sophisticated algorithms.

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_0 + a_2 + a_3 \\ a_0 + a_1 + a_2 \\ a_0 + a_1 + a_2 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

$$x_0 = a_0 + a_1$$

$$x_1 = x_0 + a_2 = a_0 + a_1 + a_2$$

$$x_2 = x_1 + a_3 = a_0 + a_1 + a_2 + a_3$$

$$x_3 = x_2 + a_1 = a_0 + a_2 + a_3$$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
		000000000000000000000000		

- There exists many follow-up work.
- More sophisticated algorithms.

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_0 + a_2 + a_3 \\ a_0 + a_1 + a_2 \\ a_0 + a_1 + a_2 + a_3 \\ a_1 + a_2 + a_3 \end{pmatrix}$$

・ コット (雪) (小田) (コット 日)

$$x_0 = a_0 + a_1$$

$$x_1 = x_0 + a_2 = a_0 + a_1 + a_2$$

$$x_2 = x_1 + a_3 = a_0 + a_1 + a_2 + a_3$$

$$x_3 = x_2 + a_1 = a_0 + a_2 + a_3$$

$$x_4 = x_2 + a_0 = a_1 + a_2 + a_3$$

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion o

- There exists many follow-up work.
- More sophisticated algorithms.

Example

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x_3 = a_0 + a_2 + a_3 \\ x_1 = a_0 + a_1 + a_2 \\ x_2 = a_0 + a_1 + a_2 + a_3 \\ x_4 = a_1 + a_2 + a_3 \end{pmatrix}$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

$$x_0 = a_0 + a_1$$

$$x_1 = x_0 + a_2 = a_0 + a_1 + a_2$$

$$x_2 = x_1 + a_3 = a_0 + a_1 + a_2 + a_3$$

$$x_3 = x_2 + a_1 = a_0 + a_2 + a_3$$

$$x_4 = x_2 + a_0 = a_1 + a_2 + a_3$$

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results ●oooo	Conclusion o

Outline

Previous Work

2 Shorter Linear Straight-Line Programs

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
			00000	

• We applied the heuristics to

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
			0000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Improved Implementations

• We applied the heuristics to

matrices from previous work

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
			0000	

We applied the heuristics to

- matrices from previous work
- matrices known from block ciphers and hash functions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
			00000	

- We applied the heuristics to
 - matrices from previous work
 - matrices known from block ciphers and hash functions
- Could always find improved implementations (lower XOR count).

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results	Conclusion
			0000	

- We applied the heuristics to
 - matrices from previous work
 - matrices known from block ciphers and hash functions
- Could always find improved implementations (lower XOR count).
- Including AES MixColumns implementation with 97 XORs. (So far 103 was best.)

Ctatiat		000000000000000000000000000000000000000	00000	
Statist	ical Analysis			

• Analyzed different constructions Cauchy, Circulant, Hadamard, Toeplitz, Vandermonde, Arbitrary

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

	1			
Motivation Previous	Work Shorter Linea	r Straight-Line Programs	Results oo●oo	Conclusion o

Statistical Analysis

• Analyzed different constructions *Cauchy, Circulant, Hadamard, Toeplitz, Vandermonde, Arbitrary*

- No construction was superior.
- Exception: Subfield Construction

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results oo●oo	Conclusion o
<u></u>				

Statistical Analysis

- Analyzed different constructions *Cauchy, Circulant, Hadamard, Toeplitz, Vandermonde, Arbitrary*
- No construction was superior.
- Exception: Subfield Construction

Good strategy

Using subfield construction with best results from smaller S-box size.

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results ○○○●○	Conclusion O
New R	esults			

Table: New best XOR counts compared to previous work. Matrices in the lower half are involutory.

Dimension	S-box	Previously best	New best
4 × 4	4 bit	58	36
4×4	8 bit	106	72
8 imes 8	4 bit	384	196
8 imes 8	8 bit	640	392
4×4	4 bit	63	42
4 imes 4	8 bit	126	84
8 imes 8	4 bit	424	212
8 imes 8	8 bit	736	424

Motivation	Previous Work	Shorter Linear Straight-Line Programs	Results oooo●	Conclusion O
New Re	sults			

Table: New best XOR counts compared to previous work. Matrices in the lower half are involutory.

Dimension	S-box	Previously best	New best
4 × 4	4 bit	10 + 48	-12 + 48
4×4	8 bit	10 + 96	-24 + 96
8 imes 8	4 bit	160 + 224	-28 + 224
8 × 8	8 bit	192 + 448	-56 + 448
4 × 4	4 bit	15 + 48	-6 + 48
4×4	8 bit	30 + 96	-12 + 96
8 imes 8	4 bit	200 + 224	-12 + 224
8 × 8	8 bit	288 + 448	-24 + 448

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion •
Conclu	ision			

Take Home Messages

- Optimize globally rather than locally.
- Stop thinking in overhead and fixed cost.
- Use the existing heuristics.
- Not necessary to restrict to matrices over finite fields.

https://github.com/pfasante/shorter_linear_slps_for_mds_matrices

Motivation 00000	Previous Work	Shorter Linear Straight-Line Programs	Results 00000	Conclusion •
Conclu	ision			

Take Home Messages

- Optimize globally rather than locally.
- Stop thinking in overhead and fixed cost.
- Use the existing heuristics.
- Not necessary to restrict to matrices over finite fields.

https://github.com/pfasante/shorter_linear_slps_for_mds_matrices

Any Questions?