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Linear Layers

Matrix multiplication(s).
Often MDS matrices.
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Metric: XOR count

Implement matrix multiplication only with XOR operations.
Use as few XORs as possible.
Idea: Low XOR count = Low chip-area

Note: No intermediate result needs to be recomputed.
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Counting XORs: Overhead and Fixed Cost

The XOR count is typically split into overhead and
fixed cost.
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Previous Results

Table: Best XOR counts of previous work. Matrices in the lower half
are involutory.

Dimension S-box XOR count

4× 4 4 bit 10 + 48
4× 4 8 bit 10 + 96
8× 8 4 bit 160 + 224
8× 8 8 bit 192 + 448

4× 4 4 bit 15 + 48
4× 4 8 bit 30 + 96
8× 8 4 bit 200 + 224
8× 8 8 bit 288 + 448
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Local Optimization

Optimize k × k matrix over F2.

M =


α1,1 α1,2 . . . α1,n
α2,1
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 , αi,j ∈ F2k
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Global Optimization

Optimize nk × nk matrix over F2.

M =


α1,1 α1,2 . . . α1,n
α2,1

...
. . .

αn,1 αn,n

 , αi,j ∈ F2k



Motivation Previous Work Shorter Linear Straight-Line Programs Results Conclusion

Global Optimization

BFA 2017: Boyar, Find, Peralta
Low-Depth, Low-Size Circuits for Cryptographic Applications

ePrint 2017: Visconti, Schiavo, Peralta
Improved upper bounds for the expected circuit complexity of dense
systems of linear equations over GF(2)

JoC 2013: Boyar, Matthews, Peralta
Logic Minimization Techniques with Applications to Cryptology

SAT 2010: Fuhs, Schneider-Kamp
Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using
SAT

IWIL 2010: Fuhs, Schneider-Kamp
Optimizing the AES S-Box using SAT

MFCS 2008: Boyar, Matthews, Peralta
On the Shortest Linear Straight-Line Program for Computing Linear
Forms

ISIT 1997: Paar
Optimized Arithmetic for Reed-Solomon Encoders
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Algorithm 1 (Paar 1997)

Find most common subexpression.
Add according computation to the program.

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1
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Algorithm 1 (Paar 1997)

Example
1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1




a0
a1
a2
a3

 =


x3 = a0 + a2 + a3
x1 = a0 + a1 + a2

x4 = a0 + a1 + a2 + a3
x5 = a1 + a2 + a3


x0 = a0 + a2
x1 = x0 + a1 = a0 + a1 + a2
x2 = a1 + a2
x3 = x0 + a3 = a0 + a2 + a3
x4 = x1 + a3 = a0 + a1 + a2 + a3
x5 = x2 + a3 = a1 + a2 + a3
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Algorithm 1 (Paar 1997)

Table: New XOR counts for matrices from previous work. Matrices in
the lower half are involutory.

Dimension S-box Previously best New results

4× 4 4 bit 58 46
4× 4 8 bit 106 102
8× 8 4 bit 384 210
8× 8 8 bit 640 464

4× 4 4 bit 63 51
4× 4 8 bit 126 102
8× 8 4 bit 424 222
8× 8 8 bit 736 620
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More advanced heuristics

There exists many follow-up work.
More sophisticated algorithms.
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Improved Implementations

We applied the heuristics to

matrices from previous work
matrices known from block ciphers and hash functions

Could always find improved implementations (lower XOR
count).
Including AES MixColumns implementation with 97 XORs.
(So far 103 was best.)
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Statistical Analysis

Analyzed different constructions
Cauchy, Circulant, Hadamard, Toeplitz, Vandermonde,
Arbitrary

No construction was superior.
Exception: Subfield Construction

Good strategy

Using subfield construction with best results from smaller S-box
size.
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New Results

Table: New best XOR counts compared to previous work. Matrices in
the lower half are involutory.

Dimension S-box Previously best New best

4× 4 4 bit 58 36
4× 4 8 bit 106 72
8× 8 4 bit 384 196
8× 8 8 bit 640 392

4× 4 4 bit 63 42
4× 4 8 bit 126 84
8× 8 4 bit 424 212
8× 8 8 bit 736 424
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New Results

Table: New best XOR counts compared to previous work. Matrices in
the lower half are involutory.

Dimension S-box Previously best New best

4× 4 4 bit 10 + 48 −12 + 48
4× 4 8 bit 10 + 96 −24 + 96
8× 8 4 bit 160 + 224 −28 + 224
8× 8 8 bit 192 + 448 −56 + 448

4× 4 4 bit 15 + 48 −6 + 48
4× 4 8 bit 30 + 96 −12 + 96
8× 8 4 bit 200 + 224 −12 + 224
8× 8 8 bit 288 + 448 −24 + 448
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Conclusion

Take Home Messages

Optimize globally rather than locally.
Stop thinking in overhead and fixed cost.
Use the existing heuristics.
Not necessary to restrict to matrices over finite fields.

https://github.com/pfasante/shorter_linear_slps_for_mds_matrices

Any Questions?
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