Linear Cryptanalysis: Key Schedules and Tweakable Block Ciphers

Thorsten Kranz, Gregor Leander, Friedrich Wiemer

Horst Görtz Institute for IT Security, Ruhr University Bochum

Block Cipher Design

Horst Görz Institute for fF-Security

Block Cipher Design

Block Cipher Design

How does the key schedule influence statistical attacks?

Horst Görtz Institute for IT-Security

Linear Cryptanalysis

For
$$E_k : \mathbb{F}_2^n \to \mathbb{F}_2^n$$
 and $\alpha, \gamma \in \mathbb{F}_2^n$

Bias of a linear approximation

$$\mathsf{Pr}_{\mathbf{X}}[\langle \gamma, \mathbf{E}_{k}(\mathbf{X}) \rangle = \langle \alpha, \mathbf{X} \rangle] = \frac{1}{2} + \epsilon_{\mathbf{E}_{k}}(\alpha, \gamma)$$

Goal: Find (α, γ) such that $|\epsilon_{E_k}(\alpha, \gamma)|$ is large.

Horst Görtz Institute for ff-Security

Linear Cryptanalysis

For
$$E_k : \mathbb{F}_2^n \to \mathbb{F}_2^n$$
 and $\alpha, \gamma \in \mathbb{F}_2^n$

Bias of a linear approximation

$$\mathsf{Pr}_{\mathbf{X}}[\langle \gamma, \mathbf{E}_{k}(\mathbf{X}) \rangle = \langle \alpha, \mathbf{X} \rangle] = \frac{1}{2} + \epsilon_{\mathbf{E}_{k}}(\alpha, \gamma)$$

Goal: Find (α, γ) such that $|\epsilon_{E_k}(\alpha, \gamma)|$ is large.

Fourier Coefficient

$$\widehat{E_k}(\alpha,\gamma) = 2^{n+1} \epsilon_{E_k}(\alpha,\gamma)$$

Horst Görtz Institute for IT-Security

ъ

・ロット 御マ キョマ キョン

Linear Cryptanalysis

For
$$E_k : \mathbb{F}_2^n \to \mathbb{F}_2^n$$
 and $\alpha, \gamma \in \mathbb{F}_2^n$

Bias of a linear approximation

$$\mathsf{Pr}_{\mathbf{X}}[\langle \gamma, \mathbf{E}_{k}(\mathbf{X}) \rangle = \langle \alpha, \mathbf{X} \rangle] = \frac{1}{2} + \epsilon_{\mathbf{E}_{k}}(\alpha, \gamma)$$

Goal: Find (α, γ) such that $|\epsilon_{E_k}(\alpha, \gamma)|$ is large.

Fourier Coefficient

$$\widehat{E_k}(\alpha,\gamma) = 2^{n+1} \epsilon_{E_k}(\alpha,\gamma)$$

How does the key schedule influence the Fourier coefficient?

Horst Görtz Institute for IT-Security

・ロット 御マ キョマ キョン

Outline

- 2 Linear Key Schedules and Round Constants
- 3 Linear Hulls and Tweakable Block Ciphers

Outline

- Linear Key Schedules and Round Constants
- 3 Linear Hulls and Tweakable Block Ciphers

Experiments with one bit trails

• We cannot compute the exact Fourier coefficient

[1] Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis, SAC 2008.

for IT-Security

Experiments with one bit trails

- We cannot compute the exact Fourier coefficient
- For round-reduced PRESENT, it is enough to look at the one bit trails [1]

[1] Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis, SAC 2008.

Round-reduced PRESENT: Identical round keys cause greater variance [2]

Round-reduced PRESENT: Identical round keys cause greater variance [2]

Round-reduced PRESENT with Serpent-type S-box

Horst Görtz Institute

(日)

Round-reduced PRESENT with Serpent-type S-box

Number of weak keys is substantially increased

- 3% outliers with $|x \mu| > 3\sigma$
- Factor of 10 higher than what we expect from normal distribution
- Factor of 2²⁰ higher than what we expect from independent round keys

Worst case for increasing number of rounds

For increasing number of rounds, the distribution of 1 bit trails converges to

$$\widehat{E_k}(\alpha, \gamma) \sim \begin{cases} -4\sigma & \text{with probability } \frac{1}{32} \\ 0 & \text{with probability } \frac{15}{16} \\ 4\sigma & \text{with probability } \frac{1}{32} \end{cases}$$

This distribution fulfills Tchebysheff's bound with equality:

$$\Pr\left[|\widehat{E}_{k}|(\alpha,\gamma) \geq 4 \cdot \sigma\right] = \left(\frac{1}{32} + \frac{1}{32}\right) = \frac{1}{4^{2}}$$

Horst Görtz Institute for IT-Socurity

Outline

2 Linear Key Schedules and Round Constants

3 Linear Hulls and Tweakable Block Ciphers

Key Schedule Design

- Hypothesis of Independent Round Keys wrong. Instead: Key Schedule
- Often a linear function.
- Using round constants.

Sound Design: Linear Key Schedule with Random Constants

Variance of Fourier Coefficients (over the keys)

For a linear key schedule, the average variance over all constants is equal to the variance for independent round keys.

Choosing Random Constants

Choosing any linear key schedule and random round constants is on average as good as having independent round keys (in terms of the variance of the distribution).

for IT-Security

Experiments: Linear Key Schedule with Random Constants

Outline

- Linear Key Schedules and Round Constants
- 3 Linear Hulls and Tweakable Block Ciphers

Tweakable Block Ciphers

New attack vector: also consider tweak input for linear cryptanalysis.

Input mask is $(\alpha, \beta) \in \mathbb{F}_2^n \times \mathbb{F}_2^m$.

Tweaks do not introduce new linear trails

Observation

Tweaking a block cipher with a linear key schedule does not introduce any new linear trails.

Design Consequences

Protecting a tweakable block cipher against linear cryptanalysis can be done in the same way as in the non-tweakable case.

Horst Görtz Institute for IT-Security

Application: Design of SKINNY

Table: Lower bounds on the number of active Sboxes in SKINNY.

Model	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
SK	75	82	88	92	96	102	108	(114)	(116)	(124)	(132)	(138)	(136)	(148)	(158)
TK1	54	59	62	66	70	75	79	83	85	88	95	102	(108)	(112)	(120)
TK2	40	43	47	52	57	59	64	67	72	75	82	85	88	92	96
ткз	27	31	35	43	45	48	51	55	58	60	65	72	77	81	85
SK Lin	70	76	80	85	90	96	102	107	(110)	(118)	(122)	(128)	(136)	(141)	(143)

Horst Görz Institute for IT-Security

Any Questions?

Any Questions?

Round-reduced PRESENT with Serpent-type S-box

Fourier coefficient of $E_k(x) = F(x, k)$

 $\mathbf{2}^{m}\widehat{E_{k}}(\alpha,\gamma) = \sum_{\beta \in \mathbb{F}_{2}^{m}} (-1)^{\langle \beta,k \rangle} \widehat{F}((\alpha,\beta),\gamma)$

 $\widehat{F}((\alpha,\beta),\gamma) = \sum_{k \in \mathbb{F}_2^m} (-1)^{\langle \beta,k \rangle} \widehat{E_k}(\alpha,\gamma)$

Horst Görtz Institute

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Fourier coefficient of $E_k(x) = F(x, k)$

$$2^{m}\widehat{E_{k}}(\alpha,\gamma) = \sum_{\beta \in \mathbb{F}_{2}^{m}} (-1)^{\langle \beta,k \rangle} \widehat{F}((\alpha,\beta),\gamma)$$

 $\widehat{F}((\alpha,\beta),\gamma) = \sum_{k \in \mathbb{F}_2^m} (-1)^{\langle \beta,k \rangle} \widehat{E_k}(\alpha,\gamma)$

Horst Görtz Institute for IT-Security

Fourier coefficient of $E_t(x) = F(x, t)$

$$2^{m}\widehat{E}_{t}(\alpha,\gamma) = \sum_{\beta \in \mathbb{F}_{2}^{m}} (-1)^{\langle \beta,t \rangle} \widehat{F_{k}}((\alpha,\beta),\gamma)$$

 $\widehat{F_k}((\alpha,\beta),\gamma) = \sum_{t \in \mathbb{F}_2^m} (-1)^{\langle \beta,t \rangle} \widehat{E}_t(\alpha,\gamma)$

Horst Görtz Institute for IT-Security

・ロット 御マ キョマ キョン

Linear Hull for key-alternating cipher

Linear Hull Theorem

$$r \cdot \widehat{\mathsf{KeyAlt}}_{k}(\alpha, \gamma) = 2^{n} \sum_{\substack{\theta \\ \theta_{0} = \alpha, \theta_{r} = \gamma}}^{\theta} (-1)^{\langle \theta, k \rangle} C_{\theta}$$

where $\theta \in \mathbb{F}_2^{(r+1)n}$ and $C_{\theta} = 2^n \prod_{i=0}^{r-1} \widehat{H}_i(\theta_i, \theta_{i+1})$

Horst Görtz Institute

(日)

Tweaks do not introduce new linear trails

Let r-TweakAlt^L be a tweak-alternating and key-alternating block cipher with linear key-schedule L

$$r\text{-TweakAlt}^{L}((\alpha,\beta),\gamma) = 2^{(r+2)n} \sum_{\substack{\theta \\ \theta_{0}=\alpha, \theta_{r}=\gamma}}^{\theta} (-1)^{\langle \theta,k \rangle} C_{\theta}$$

Design Consequences

Protecting a tweakable block cipher against linear cryptanalysis can be done in the same way as in the non-tweakable case.

for IT-Security

A D > A B > A B > A B >

for IT-Security

・ロト ・回ト ・ヨト ・ヨ

for IT-Security∎ ▲□▶▲쿱▶▲콜▶▲콜▶ 콜 ∽) < 은

Horst Görtz Institute

・ロト ・回ト ・ヨト ・ヨ