BISON Instantiating the Whitened Swap-Or-Not Construction EuroCrypt – May 23rd, 2019

INRIA, and Horst Görtz Institut für IT Sicherheit, Ruhr-Universität Bochum Anne Canteaut, Virginie Lallemand, Gregor Leander, Patrick Neumann, and *Friedrich Wiemer*

Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | EuroCrypt – May 23rd, 2019

BISON Instantiating the Whitened Swap-Or-Not Construction

- Whitened Swap-Or-Not Construction developed by Hoang et al. and Tessaro
- Way of building block ciphers

22

201

RUB

• As this is one of the few talks here at EuroCrypt about block ciphers, we will start simple

Two Parts

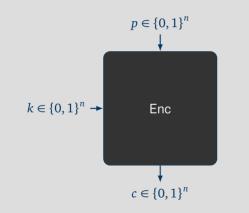
- Why do we need so many encryption rounds?
- Security argument for differential cryptanalysis.

RUB

BISON Instantiating the Whitened Swap-Or-Not ²⁹ Construction

Overview

2019-05-



• Talk mainly about two parts of the paper:

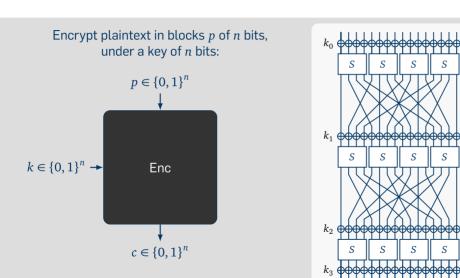
- Why do we need so many rounds (easy to understand argument)
- Security against differential cryptanalysis
 (again relative simple argument that gives strong security here)

Block Ciphers

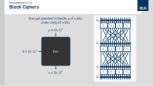
Encrypt plaintext in blocks p of n bits, under a key of *n* bits:

02

2019-


BISON Instantiating the Whitened Swap-Or-Not 역 Construction -The WSN construction

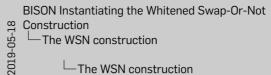
-Block Ciphers



- Block ciphers encrypt *blocks* of *n*-bit inputs under an *n*-bit master key
- As a basic cryptographic primitive, we need special modes of operations, if the data to be encrypted is not of exactly *n*-bit length.
- This we do not consider here, instead we want to look at how to build this black box.
- Typicall approach is an SPN structure, where key-addition, S-box layer and a linear layer are iterated over several rounds.
- Relatively well understood
- Good security arguments against known attacks
- There are some problems: differentials and linear hull effects

Block Ciphers

	BISON Instantiating the Whitened Swap-Or-Not
18	Construction
-02-	-The WSN construction
2019-05-18	– Block Ciphers


- Block ciphers encrypt *blocks* of *n*-bit inputs under an *n*-bit master key
- As a basic cryptographic primitive, we need special modes of operations, if the data to be encrypted is not of exactly *n*-bit length.
- This we do not consider here, instead we want to look at how to build this black box.
- Typicall approach is an SPN structure, where key-addition, S-box layer and a linear layer are iterated over several rounds.
- Relatively well understood
- Good security arguments against known attacks
- There are some problems: differentials and linear hull effects

The WSN construction

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Overview round, iterated r times	Whitened Swap-Or-Not round function
$x \xrightarrow{f} \xrightarrow{1} \bigoplus_{ $	$x, k \in \{0, 1\}^n \text{ and } f_k : \{0, 1\}^n \to \{0, 1\}$ $y = \begin{cases} x + k & \text{if } f_k(x) = 1\\ x & \text{if } f_k(x) = 0 \end{cases}$

The WSN construction

- Lets take a look at the WSN construction (simplified).
- Again, an iterated round function, where the input is fed into from the left.
- Next, a Boolean function decides if either the round key k is xored onto the input, or nothing happens.
- The result is the updated state, respective the output of the round.
- In other words, x, and k are both n-bit strings and f is an n-bit Boolean function.
- The round output y is either x + k if $f_k(x) = 1$ or just x in the other case.
- So why is this nice?

The WSN construction

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Overview round, iterated r times	Whitened Swap-Or-Not round function
$x \xrightarrow{f} \xrightarrow{1} \bigoplus_{0} y$	$x, k \in \{0, 1\}^n \text{ and } f_k : \{0, 1\}^n \to \{0, 1\}$ $y = \begin{cases} x + k & \text{if } f_k(x) = 1\\ x & \text{if } f_k(x) = 0 \end{cases}$

Security Proposition (informal)

The WSN construction with $r = \Theta(n)$ rounds is *Full Domain* secure.

BISON Instantiating the Whitened Swap-Or-Not Construction The WSN construction

- Lets take a look at the WSN construction (simplified).
- Again, an iterated round function, where the input is fed into from the left.
- Next, a Boolean function decides if either the round key k is xored onto the input, or nothing happens.
- The result is the updated state, respective the output of the round.
- In other words, x, and k are both n-bit strings and f is an n-bit Boolean function.
- The round output y is either x + k if $f_k(x) = 1$ or just x in the other case.
- So why is this nice?
- Tessaro was able to show that this construction, when iterated over $\Theta(n)$ rounds, achieves Full Domain security (what ever that means).

An Implementation

BISON Instantiating the Whitened Swap-Or-Not Construction The WSN construction

• Sounds all very great.

• So from a practitioners point of view the natural next point is: lets implement it.

An Implementation

Construction

 $f_k(x) := ?$ Key schedule? $\blacksquare \Theta(n)$ rounds?

Theoretical vs. practical constructions

02

2019-

BISON Instantiating the Whitened Swap-Or-Not 🚆 Construction -The WSN construction

An Implementation

• Sounds all very great.

So from a practitioners point of view the natural next point is: lets implement it.

An Implementation

 $f_{n}(x) := ?$ Key schedule? • O(n) rounds?

Theoretical vs. practical construction

RUB

• But uggh...

- How does this Boolean function f_{ν} actually looks like?
- What about a key schedule? How do we derive the round keys?
- And how many are $\Theta(n)$ rounds?
- So, from a theoretical point of view we have a nice construction.
- But from a practical point of view it is basically useless.
- OK. let us fix this.

C

The WSN construction Encryption

BISON Instantiating the Whitened Swap-Or-Not Construction -Generic Analysis

└─ The WSN construction

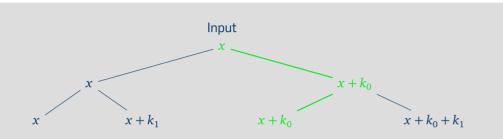


• We can observe an interesting first property, when looking at the encryption procedure round by round

• Starting with the plaintext x...

Input x

The WSN construction


• We can observe an interesting first property, when looking at the encryption procedure round by round

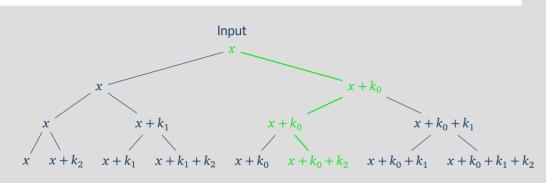
RUB

• Starting with the plaintext x...

• ... in each round, we either add the round key k_i , ...

The WSN construction

BISON Instantiating the Whitened Swap-Or-Not Construction Generic Analysis



- We can observe an interesting first property, when looking at the encryption procedure round by round
- Starting with the plaintext x...

• ... in each round, we either add the round key k_i , ...

• ... or not.

The WSN construction Encryption

Encryption:
$$E_k(x) \coloneqq x + \sum_{i=1}^r \lambda_i k_i = y$$

BISON Instantiating the Whitened Swap-Or-Not 역 Construction -Generic Analysis 02 2019-(

The WSN construction

- We can observe an interesting first property, when looking at the encryption procedure round by round
- Starting with the plaintext *x*...
- ... in each round, we either add the round key k_i, \ldots
- ... or not.
- Thus we end up with a binary tree of possible states.
- Furthermore, the encryption can also be written as the plaintext plus the sum of some round keys, chosen by the λ_i 's here.

Generic Analysis On the number of rounds

Observation

The ciphertext is the plaintext plus a subset of the round keys:

 $y = x + \sum_{i=1}^{r} \lambda_i k_i$ For pairs x_i, y_i : span $\{x_i + y_i\} \subseteq$ span $\{k_i\}$.

BISON Instantiating the Whitened Swap-Or-Not Construction

- 2019-05--Generic Analysis
 - Generic Analysis

- First observation: span $\{x_i + y_i\} \subseteq \text{span}\{k_i\}$
- Leads to a simple distinguishing attack, if number of rounds r < n.

Generic Analysis On the number of rounds

Observation

The ciphertext is the plaintext plus a subset of the round keys:

 $y = x + \sum_{i=1}^r \lambda_i k_i$

For pairs x_i, y_i : span $\{x_i + y_i\} \subseteq \text{span}\{k_j\}$.

Distinguishing Attack for r < n rounds

There is an $u \in \mathbb{F}_2^n \setminus \{0\}$, s. t. $\langle u, x \rangle = \langle u, y \rangle$ holds always:

 $\langle u, y \rangle = \left\langle u, x + \sum \lambda_i k_i \right\rangle$ = $\langle u, x \rangle + \left\langle u, \sum \lambda_i k_i \right\rangle = \langle u, x \rangle + 0$

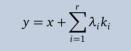
for all $u \in \operatorname{span} \{k_1, \dots, k_r\}^{\perp} \neq \{0\}$

BISON Instantiating the Whitened Swap-Or-Not

Construction

2019-

- ம் └─ Generic Analysis
 - Generic Analysis



- First observation: span $\{x_i + y_i\} \subseteq \text{span}\{k_j\}$
- Leads to a simple distinguishing attack, if number of rounds r < n.
- It is easy to find a u, s.t. $\langle u, y \rangle = \langle u, x \rangle = 0$ for all x, y = x, E(x).
- Simply use the bilinearity of the scalar product.
- Then any *u* from the dual space spanned by the round keys fullfills the above equation.
- As long as there are less then *n* round keys, this dual space has dimension greater or equal then one.

Generic Analysis On the number of rounds

Observation

The ciphertext is the plaintext plus a subset of the round keys:

For pairs x_i, y_i : span $\{x_i + y_i\} \subseteq \text{span}\{k_j\}$.

Distinguishing Attack for r < n rounds

There is an $u \in \mathbb{F}_2^n \setminus \{0\}$, s. t. $\langle u, x \rangle = \langle u, y \rangle$ holds always:

 $\langle u, y \rangle = \left\langle u, x + \sum \lambda_i k_i \right\rangle$ $= \langle u, x \rangle + \left\langle u, \sum \lambda_i k_i \right\rangle = \langle u, x \rangle + 0$ for all $u \in \text{span} \{k_1, \dots, k_r\}^{\perp} \neq \{0\}$

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

BISON Instantiating the Whitened Swap-Or-Not

Construction

2019-

- ம் └─ Generic Analysis
 - Generic Analysis

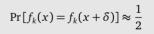
- First observation: span $\{x_i + y_i\} \subseteq \text{span}\{k_j\}$
- Leads to a simple distinguishing attack, if number of rounds r < n.
- It is easy to find a u, s.t. $\langle u, y \rangle = \langle u, x \rangle = 0$ for all x, y = x, E(x).
- Simply use the bilinearity of the scalar product.
- Then any *u* from the dual space spanned by the round keys fullfills the above equation.
- As long as there are less then *n* round keys, this dual space has dimension greater or equal then one.
- A first design rational is thus...

Generic Analysis On the Boolean functions f

A bit out of the clear blue sky, but:

Rationale 2

For any instance, f_k has to depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.


BISON Instantiating the Whitened Swap-Or-Not Construction -Generic Analysis 2019-05-

Generic Analysis

Generic Analysis RUB A bit out of the clear blue sky, but: For any instance, f, has to depend on all bits, and for any $\delta \in \mathbb{R}^{n}$: $\Pr[f_{1}(x) = f_{1}(x + \delta)] \approx \frac{1}{2}$.

• We also need this second rationale.

- Its not so easy explainable without going into more depth.
- So you have to believe me on this one.
- It basically says that for any input difference $\delta \neq k$:

A genus of the WSN family: BISON

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Rationale 2

For any instance, f_k has to depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.

Generic properties of **B**ent whitened **S**wap **O**r **N**ot (BISON)

■ At least *n* iterations of the round function ■ The round function depends on all bits ■ $\forall \delta$: $\Pr[f_k(x) = f_k(x + \delta)] = \frac{1}{2}$ (*bent*)

- BISON Instantiating the Whitened Swap-Or-Not 쪽 Construction
- ம் └─ Generic Analysis

2019-

A genus of the WSN family: BISON

- A quick recap and implications for any WSN instance.
- Rationale 2 basically tells us, we have to use bent functions.
- Thats nice, as those functions are quite well understood and already well scrutinised.
- Also, this is the reason for the name: Bent Whitened Swap-Or-Not
- But, and thats not so nice...

A genus of the WSN family: BISON

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Rationale 2

For any instance, f_k has to depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.

Generic properties of **B**ent whitened **S**wap **O**r **N**ot (BISON)

At least n iterations of the round functionThe rConsecutive round keys linearly independent $\forall \delta$:

Rational 1 & 2: WSN is *slow* in practice!

The round function depends on all bits $\forall \delta$: $\Pr[f_k(x) = f_k(x + \delta)] = \frac{1}{2}$ (bent)

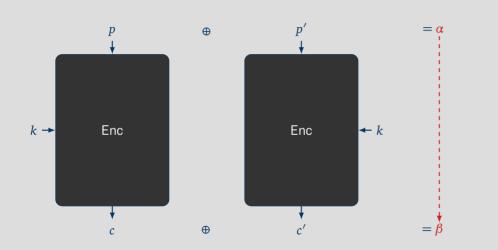
w in practice! Differentia

The advantage? Differential Cryptanalysis!

Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | EuroCrypt - May 23rd, 2019

BISON Instantiating the Whitened Swap-Or-Not

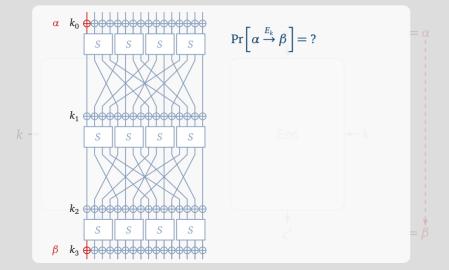
Construction


2019-

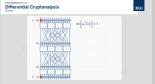
- ம் └─ Generic Analysis
 - A genus of the WSN family: BISON

- A quick recap and implications for any WSN instance.
- Rationale 2 basically tells us, we have to use *bent* functions.
- Thats nice, as those functions are quite well understood and already well scrutinised.
- Also, this is the reason for the name: Bent Whitened Swap-Or-Not
- But, and thats not so nice...
- *n* iterations of a round function that depends on *all* bits will be slow
- Let me repeat this (Reviewer 2 argued that we should optimise more): No matter how good we will optimise this: *it will be slow*
- For example, assume you can do one round in one clock cycle, this is still an order of magnitude slower than AES.
- So, why should we care about any instance?
- All hope is not lost, let's have a look at differential cryptanalysis!

Differential Cryptanalysis Primer


BISON Instantiating the Whitened Swap-Or-Not Construction

- 2019-05--Differential Analysis
 - Differential Cryptanalysis

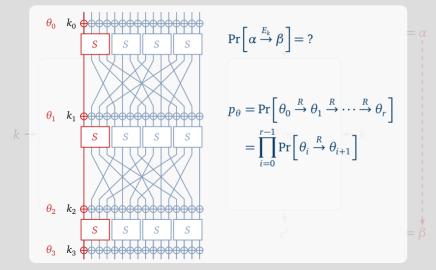

- For differential cryptanalysis, interested in propagation of input difference α to output difference β .
- Doing this in general at this abstraction level is a very hard problem.

Differential Cryptanalysis Primer

BISON Instantiating the Whitened Swap-Or-Not Construction -Differential Analysis

Differential Cryptanalysis

- For differential cryptanalysis, interested in propagation of input difference α to output difference β .
- Doing this in general at this abstraction level is a very hard problem.
- To say anything, we usually look for single so called *trails* through the inner building blocks.

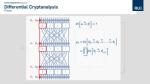

Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | EuroCrypt - May 23rd, 2019

RUB

05-

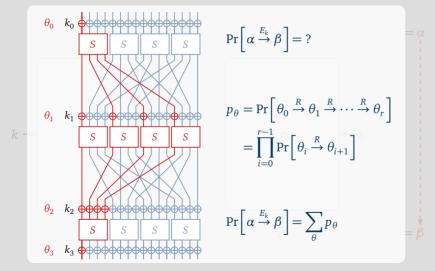
2019-

Differential Cryptanalysis Primer

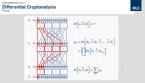

02

2019-

BISON Instantiating the Whitened Swap-Or-Not 쪽 Construction


Differential Analysis

Differential Cryptanalysis


- For differential cryptanalysis, interested in propagation of input difference α to output difference β .
- Doing this in general at this abstraction level is a very hard problem.
- To say anything, we usually look for single so called *trails* through the inner building blocks.
- Now, computing the probability of one such trail is actually doable.
- But, trails can go several alternative ways through non-linear parts, thus we have to cope with a branching effect...

Differential Cryptanalysis Primer

— Differential Cryptanalysis

- For differential cryptanalysis, interested in propagation of input difference α to output difference β . • Doing this in general at this abstraction level is a very hard problem.
- To say anything, we usually look for single so called *trails* through the inner building blocks.
- Now, computing the probability of one such trail is actually doable.
- But, trails can do several alternative ways through non-linear parts, thus we have to cope with a branching effect...
- And eventually, several of these trails cluster in a so called differential.
- While in this example it is still feasible, computing the *exact* probability in a real cipher is not.
- We thus have to restrain on bounding or approximating this probability.
- In the end, tight bounds for differentials over several rounds remain an open (but important!) problem.
- For BISON our aim is to give exactly this: a tight bound for any differential over several rounds.

Differential Cryptanalysis One round

BISON Instantiating the Whitened Swap-Or-Not

- Construction
- 2019-05--Differential Analysis
 - Differential Cryptanalysis

- We start by understanding the differential one round behaviour.
- For the three possible cases, let us look at what differences are actually possible.

Theorem

For one round of BISON the probabilities are:

$$\Pr_{x} \left[\alpha \to \beta \right] = \begin{cases} 1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0\\ \frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\}\\ 0 & \text{else} \end{cases}$$

Differential Cryptanalysis

RUB

BISON Instantiating the Whitened Swap-Or-Not

ထို Construction

2019-

- ප් 🗀 Differential Analysis
 - Differential Cryptanalysis

Theorem

For one round of BISON the probabilities are:

$$\Pr_{x} \left[\alpha \to \beta \right] = \begin{cases} 1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0\\ \frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\}\\ 0 & \text{else} \end{cases}$$

Possible differences $x + f_k(x) \cdot k$ $\oplus x + \alpha + f_k(x + \alpha) \cdot k$ $= \alpha + (f_k(x) + f_k(x + \alpha)) \cdot k$ Properties of f_k

 $f_k(x) = f_k(x+k) \tag{1}$

- We start by understanding the differential one round behaviour.
- For the three possible cases, let us look at what differences are actually possible.
- Remember that one round computes the output as $x + f_k(x) \cdot k$.
- With the input difference α we get as possible output differences $\beta \in \{0, \alpha, k, \alpha + k\}$.
- For decryption we need that x and x + k are mapped to the same value by f_k
- Thus, $\beta = \alpha$ with probability one, if and only if $\alpha = k$ or $\alpha = 0$
- If β is not one of the above four values, such an input/output pair cannot occur, thus the probability is zero.

Differential Cryptanalysis

Theorem

For one round of BISON the probabilities are:

$$\Pr_{x} \left[\alpha \to \beta \right] = \begin{cases} 1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0\\ \frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\}\\ 0 & \text{else} \end{cases}$$

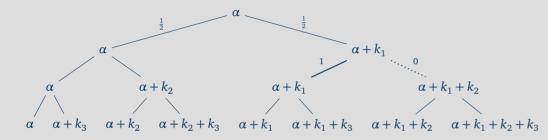
Possible differences $+ f_k(x)$ ٠k x $+ f_k(x + \alpha) \cdot k$ $\oplus x + \alpha$ $\alpha + (f_k(x) + f_k(x + \alpha)) \cdot k$ Properties of f_k $f_k(x) = f_k(x+k)$ (1) $\Pr[f_k(x) = f_k(x + \alpha)] = \frac{1}{2}$

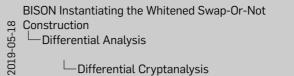
BISON Instantiating the Whitened Swap-Or-Not

역 Construction

2019-

- 명 Differential Analysis
 - Differential Cryptanalysis

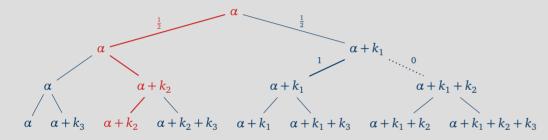



- We start by understanding the differential one round behaviour.
- For the three possible cases, let us look at what differences are actually possible.
- Remember that one round computes the output as $x + f_k(x) \cdot k$.
- With the input difference α we get as possible output differences $\beta \in \{0, \alpha, k, \alpha + k\}$.
- For decryption we need that x and x + k are mapped to the same value by f_k
- Thus, $\beta = \alpha$ with probability one, if and only if $\alpha = k$ or $\alpha = 0$
- If β is not one of the above four values, such an input/output pair cannot occur, thus the probability is zero.
- For the last case, remember that for any input difference, we required that *f_k* collides with probability one half.

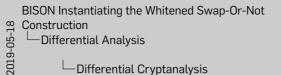
Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | EuroCrypt - May 23rd, 2019

Differential Cryptanalysis More rounds

Example differences over r = 3 rounds ($\alpha = k_1 + k_2$):


Differential Cryptanalysis

- When we look at more rounds, we can depict these cases again in this tree structure.
- Starting with the input difference α , choosing an input value x determines the path we take through the tree.
- Now assuming that $\alpha = k_1 + k_2$ it can not happen that the differential characteristic takes twice the right branch.
- This would result in a zero difference, which is not possible for permutations as long as the input difference is non-zero.


Differential Cryptanalysis More rounds

Example differences over r = 3 rounds ($\alpha = k_1 + k_2$):

Theorem (Differentials in BISON)

Let
$$\alpha, \beta \in \mathbb{F}_2^n$$
. Then the probability for the differential $\alpha \to \beta$ is $\Pr[\alpha \to \beta] = \sum_{\theta} p_{\theta} = p_{(\alpha, \theta_1, \dots, \theta_{r-1}, \beta)}$.

Differential Cryptanalysis

- When we look at more rounds, we can depict these cases again in this tree structure.
- Starting with the input difference α , choosing an input value x determines the path we take through the tree.
- Now assuming that $\alpha = k_1 + k_2$ it can not happen that the differential characteristic takes twice the right branch.
- This would result in a zero difference, which is not possible for permutations as long as the input difference is non-zero.
- Regarding differentials, the important observation is:
- For any input/output pair (α, β) , there is only one path.
- In other words: no branching occurs and the differential consists of a single trail only.

A concrete species

RUB

- Up to now we do not have specified much more then the initial WSN construction had.
- For a concrete implementation, we still need to define
 - Number of rounds
 - Key Schedule
 - Boolean function f_k
- So let us look at a concrete BISON species
- In particular, we discuss how to tackle Rationales 1 and 2.

Addressing Rationale 1 The Key Schedule

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Design Decisions	
• Choose number of rounds as $3 \cdot n$	
 Round keys derived from the state of LFSRs 	
Add round constants c_i to w_i round keys	

Implications

- Clocking an LFSR is cheap
- For an LFSR with irreducible feedback polynomial of degree n, every n consecutive states are linearly independent
- Round constants avoid structural weaknesses

BISON Instantiating the Whitened Swap-Or-Not 약 Construction 승 - The concrete Instance

Addressing Rationale 1

- Due to analysis of the alg. deg., we chose 3n rounds, see last slide.
- Deriving round keys from the states of LFSRs is efficiently implementable and fullfils our requirements for linear independent round keys.
- For those of you how attended Gregors talk at FSE:
 - While generating test vectors for the implementation we again noted some unwanted symmetries for encryptions with low hamming weight.
 - $\,-\,$ Thus we added round constants, to avoid these structural weaknesses.
 - (Sorry for fixing another cipher)

RUB

2019-

Addressing Rationale 2 The Round Function

Rationale 2

For any instance, the f_k should depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.

Design Decisions	Implications
• Choose $f_k : \mathbb{F}_2^n \to \mathbb{F}_2$ s.t.	Bent fund
1	Bent fund
$\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x+\delta)] = \frac{1}{2}$,	■ Instance

that is, f_k is a bent function.

Choose the simplest bent function known:

 $f_k(x,y) \coloneqq \langle x,y \rangle$

- Bent functions well studied
- Bent functions only exists for even n
- Instance not possible for every block length n

- BISON Instantiating the Whitened Swap-Or-Not 역 Construction 는 The concrete Instance
 - Addressing Rationale 2

- Just chose the simplest bent function, the scalar product.
- This is also efficiently implementable.
- But, another drawback:
- Bent functions exists only for even *n*.
- Thus BISON cannot be instantiated for every block length *n*.
- In particular, due to reasons not covered here, we can actually only instantiate it for *odd* block lengths.

RUB

2019-

An Implementation

RUB

BISON Instantiating the Whitened Swap-Or-Not Construction

2019-05-The concrete Instance

An Implementation

- Coming back to our initial guestion.
- And basically only for the sake of completeness, as we already saw this is going to be slow.

Construction $f_k(x) := ?$

Key schedule? $\blacksquare \Theta(n)$ rounds?

r

An Implementation

Construction

 $\bullet f_k(x,y) \coloneqq \langle x,y \rangle$ Key schedule: LFSRs. $\Theta(n) = 3n$ rounds.

RUB

2019-05-

- Coming back to our initial guestion.
- And basically only for the sake of completeness, as we already saw this is going to be slow.

• We have specified everything, so let's benchmark against AES (what else).

An Implementation

RUB

Cycles/Byte mean

0.65 3064.08 BIS

∰ Con

2019-05-

ON Instantiating the Whitened Swap-Or-Not	An Imple
struction	Constructio
The concrete Instance	f _k (x, y Key sci Θ(n) =
- An Implementation	* AES-128 on 1 * BISON on Col

enstruction $f_{1}(x, y) := \langle x, y \rangle$	Cipher	Block size (bit)	Cycles/Byte mean
 Key schedule: LFSRs. Ø(n) = 3n rounds. 	AES* BISON	128 129	0.65 3064.08

•	Coming	back	to	our	initial	question.
---	--------	------	----	-----	---------	-----------

- And basically only for the sake of completeness, as we already saw this is going to be slow.
- We have specified everything, so let's benchmark against AES (what else).
- OK, told you so, BISON is like 4 700 times slower than AES.
- Or: more than three orders of magnitude.
- Optimising this will not help enough.

Construction	Cipher	Block size
$f_k(x,y) \coloneqq \langle x,y \rangle$		(bit)
Key schedule: LFSRs.	AES*	128
$\Theta(n) = 3n \text{ rounds.}$	BISON [†]	129

* AES-128 on Skylake Intel® Core i7-7800X @ 3.5GHz, see Daemen et al. [The design of Xoodoo and Xoofff, Table 5]. † BISON on CoffeeLake Intel® Core i7-8700 @ 3.7 GHz. **Further Cryptanalysis**

Linear Cryptanalysis

For $r \ge n$ rounds, the correlation of any non-trivial linear trail for BISON is upper bounded by $2^{-\frac{n+1}{2}}$.

Invariant Attacks

For $r \ge n$ rounds, neither invariant subspaces nor nonlinear invariant attacks do exist for BISON.

Zero Correlation

For r > 2n - 2 rounds, BISON does not exhibit any zero correlation linear hulls.

Impossible Differentials

For r > n rounds, there are no impossible differentials for BISON.

Algebraic Degree and Division Property

Algebraic degree grows *linearly*. Conservative estimate: for $r \ge 3n$ rounds, no attack possible.

BISON Instantiating the Whitened Swap-Or-Not

ထ္ Construction

2019-

- ு ⊢Further Analysis
 - Further Cryptanalysis

- We did more cryptanalysis, but our results are more of the "classical" kind.
- For linear cryptanalysis, we bound the correlation of any non-trivial trail.
- Current known security arguments for resistance against invariant attacks apply.
- Zero correlation and impossible differentials do not exist for 2n rounds or more.
- Best attacks seem to exploit the algebraic degree.
- We show that it grows only linearly which is especially bad in comparison to SPN ciphers.
- The result on the algebraic degree also applies to NLFSRs or maximally unbalanced Feistel networks.
- Conservative estimation: might work for more than 2*n* rounds, but not for 3*n* or more.

Conclusion/Questions Thank you for your attention!

BISON Instantiating the Whitened Swap-Or-Not

- Construction
- 2019-05--Further Analysis
 - Conclusion/Questions

ISON	Open Problems
A first instance of the WSN construction Good results for differential cryptanalysis	Construction for linear cryptanalysis? Similar args. for Unbalanced Feistel?

BISON

A first instance of the WSN construction Good results for differential cryptanalysis

Open Problems

Construction for linear cryptanalysis? Similar args. for Unbalanced Feistel?

BISON Instantiating the Whitened Swap-Or-Not Construction Further Analysis Details

Details

BISON Round Function

BISON's round function

For round keys $k_i \in \mathbb{F}_2^n$ and $w_i \in \mathbb{F}_2^{n-1}$ the round function computes $R_{k_i,w_i}(x) \coloneqq x + f_{b(i)} \big(w_i + \Phi_{k_i}(x) \big) \cdot k_i.$

where

```
\blacksquare \Phi_{k_i} and f_{b(i)} are defined as
      \Phi_k(x): \mathbb{F}_2^n \to \mathbb{F}_2^{n-1}
```

 $\Phi_k(x) := (x + x[i(k)] \cdot k)[j]_{\substack{1 \le j \le n \\ j \ne i(k)}}$ ■ and b(i) is 0 if $i \leq \frac{r}{2}$ and 1 else.

 $f_{b(i)}: \mathbb{F}_{2}^{\frac{n-1}{2}} \times \mathbb{F}_{2}^{\frac{n-1}{2}} \to \mathbb{F}_{2}$ $f_{b(i)}(x, y) \coloneqq \langle x, y \rangle + b(i),$

BISON Instantiating the Whitened Swap-Or-Not Construction

-Specification

BISON's round function	
For round keys $k_i \in \mathbb{F}_2^n$ and $w_i \in \mathbb{F}$	^{e-1} the round function computes
$R_{k_i,w_i}(x) := x + f_{k_i}$	$(w_i + \Phi_{k_i}(x)) \cdot k_i$.
where	
• • • • • • • • • • • • •	
$\Phi_k(x) : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^{n-1}$	$f_{k(i)} : \mathbb{F}_{2}^{\frac{k-1}{2}} \times \mathbb{F}_{2}^{\frac{k-1}{2}} \rightarrow \mathbb{F}_{2}$
$\Phi_k(x) := (x + x[i(k)] \cdot k)[j]_{\frac{1}{10}(0)}$	$f_{b(i)}(x, y) := (x, y) + b(i),$
and b(i) is 0 if i ≤ ⊆ and 1 else.	

Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | EuroCrypt - May 23rd, 2019

BISON Key Schedule

BISON's key schedule

Given

primitive $p_k, p_w \in \mathbb{F}_2[x]$ with degrees n, n-1 and companion matrices C_k, C_w . • master key $K = (k, w) \in \left(\mathbb{F}_2^n \times \mathbb{F}_2^{n-1}\right) \setminus \{0, 0\}$

Friedrich Wiemer | BISON Instantiating the Whitened Swap-Or-Not Construction | EuroCrypt - May 23rd, 2019

The *i*th round keys are computed by

 $\mathrm{KS}_i:\mathbb{F}_2^n\times\mathbb{F}_2^{n-1}\to\mathbb{F}_2^n\times\mathbb{F}_2^{n-1}$ $KS_i(k, w) \coloneqq (k_i, c_i + w_i)$

where

$$k_i = (C_k)^i k, \qquad c_i = (C_w)^{-i} e_1, \qquad w_i = (C_w)^i w.$$

21

BISON Instantiating the Whitened Swap-Or-Not ឌ្ម Construction -Specification

-6	
01	
2	

02

BISON's key sch	dute
Given	
	$p_w \in \mathbb{F}_2[x]$ with degrees $n, n-1$ and companion matrices C_k, C_w .
 master key 	$K = (k, w) \in (\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n-1}) \setminus \{0, 0\}$
The ith round ke	ys are computed by
	$KS_i : F_n^n \times F_n^{n-1} \rightarrow F_n^n \times F_n^{n-1}$
	$KS_i(k, w) := (k_{i1}, c_i + w_i)$