BISON

Instantiating the Whitened Swap-Or-Not Construction EuroCrypt - May 23rd, 2019

INRIA, and
Horst Görtz Institut für IT Sicherheit, Ruhr-Universität Bochum Anne Canteaut, Virginie Lallemand, Gregor Leander, Patrick Neumann, and Friedrich Wiemer

BISON Instantiating the Whitened Swap-Or-Not

Construction

RUB RUB $\stackrel{\circ}{\text { di }}$

- Whitened Swap-Or-Not Construction developed by Hoang et al. and Tessaro
- Way of building block ciphers
- As this is one of the few talks here at EuroCrypt about block ciphers, we will start simple

RUHR--UNvERSIÄt вос
Overview
BISON Instantiating the Whitened Swap-Or-Not

Construction

- Talk mainly about two parts of the paper:
- Why do we need so many rounds (easy to understand argument)
- Security against differential cryptanalysis (again relative simple argument that gives strong security here)

Two Parts

- Why do we need so many encryption rounds?
- Security argument for differential cryptanalysis.

BISON Instantiating the Whitened Swap-Or-Not

Construction
 -The WSN construction

 त्त —Block Ciphers- Block ciphers encrypt blocks of n-bit inputs under an n-bit master key
- As a basic cryptographic primitive, we need special modes of operations,
if the data to be encrypted is not of exactly n-bit length
- This we do not consider here, instead we want to look at how to build this black box.
- Typicall approach is an SPN structure, where key-addition, S-box layer and a linear layer are iterated over several rounds.
- Relatively well understood
- Good security arguments against known attacks
- There are some problems: differentials and linear hull effects

```
Block Ciphers
```

Encrypt plaintext in blocks p of n bits under a key of n bits:

BISON Instantiating the Whitened Swap-Or-Not

Construction

Biock Ciphers
-The WSN construction
—Block Ciphers

 $\frac{(1)}{x+\frac{2}{x}}$ (.)..............

- Block ciphers encrypt blocks of n-bit inputs under an n-bit master key
- As a basic cryptographic primitive, we need special modes of operations,
if the data to be encrypted is not of exactly n-bit length.
- This we do not consider here, instead we want to look at how to build this black box.
- Typicall approach is an SPN structure, where key-addition, S-box layer and a linear layer are iterated over several rounds.
- Relatively well understood
- Good security arguments against known attacks
- There are some problems: differentials and linear hull effects

BISON Instantiating the Whitened Swap-Or-Not

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Overview round, iterated r times

Whitened Swap-Or-Not round function

$$
\begin{gathered}
x, k \in\{0,1\}^{n} \text { and } \\
y= \begin{cases}x+k & \text { if } f_{k}(x)=1 \\
x & \text { if } f_{k}(x)=0\end{cases}
\end{gathered}
$$

- Lets take a look at the WSN construction (simplified).
- Again, an iterated round function, where the input is fed into from the left.
- Next, a Boolean function decides if either the round key k is xored onto the input, or nothing happens
- The result is the updated state, respective the output of the round.
- In other words, x, and k are both n-bit strings and f is an n-bit Boolean function.
- The round output y is either $x+k$ if $f_{k}(x)=1$ or just x in the other case
- So why is this nice?

BISON Instantiating the Whitened Swap-Or-Not

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Overview round, iterated r times

Security Proposition (informal)
The WSN construction with $r=\Theta(n)$ rounds is Full Domain secure.

Whitened Swap-Or-Not round function

$$
\begin{gathered}
x, k \in\{0,1\}^{n} \text { and } \\
y= \begin{cases}x+k & \text { if } f_{k}(x)=1 \\
x & \text { if } f_{k}(x)=0\end{cases}
\end{gathered}
$$

- Lets take a look at the WSN construction (simplified).
- Again, an iterated round function, where the input is fed into from the left.
- Next, a Boolean function decides if either the round key k is xored onto the input, or nothing happens.
- The result is the updated state, respective the output of the round.
- In other words, x, and k are both n-bit strings and f is an n-bit Boolean function.
- The round output y is either $x+k$ if $f_{k}(x)=1$ or just x in the other case.
- So why is this nice?
- Tessaro was able to show that this construction, when iterated over $\Theta(n)$ rounds, achieves Full Domain security (what ever that means).

BISON Instantiating the Whitened Swap-Or-Not

Construction

- Sounds all very great
- So from a practitioners point of view the natural next point is: lets implement it.

Rupreuwessuriteoaum An Implementation

BISON Instantiating the Whitened Swap-Or-Not

Construction

- $f_{k}(x):=?$
- Key schedule?

■ $\Theta(n)$ rounds?

Theoretical vs. practical constructions

LAn Implementation

- Sounds all very great.
- So from a practitioners point of view the natural next point is: lets implement it.
- But uggh.
- How does this Boolean function f_{k} actually looks like?
- What about a key schedule? How do we derive the round keys?
- And how many are $\Theta(n)$ rounds?
- So, from a theoretical point of view we have a nice construction.
- But from a practical point of view it is basically useless.
- OK, let us fix this.

BISON Instantiating the Whitened Swap-Or-Not

- We can observe an interesting first property, when looking at the encryption procedure round by round
- Starting with the plaintext x..

BISON Instantiating the Whitened Swap-Or-Not

- We can observe an interesting first property, when looking at the encryption procedure round by round
- Starting with the plaintext x..
- ... in each round, we either add the round key k_{i},

BISON Instantiating the Whitened Swap-Or-Not

- We can observe an interesting first property, when looking at the encryption procedure round by round
- Starting with the plaintext x..
- ... in each round, we either add the round key k_{i},
- ... or not.

Runfe:vwesariat bocнum
The WSN construction Encryption

BISON Instantiating the Whitened Swap-Or-Not
Construction
$\begin{array}{ll}\stackrel{\rightharpoonup}{1} & \text { LGeneric Analysis } \\ \stackrel{\rightharpoonup}{0} & \\ \stackrel{\rightharpoonup}{\circ} & \text { LThe WSN construction }\end{array}$

- We can observe an interesting first property, when looking at the encryption procedure round by round
- Starting with the plaintext x...
- ... in each round, we either add the round key k_{i},
- ... or not.
- Thus we end up with a binary tree of possible states
- Furthermore, the encryption can also be written as the plaintext plus the sum of some round keys, chosen by the λ_{i} 's here.

BISON Instantiating the Whitened Swap-Or-Not

Observation

■ The ciphertext is the plaintext plus a subset of the round keys:

$$
y=x+\sum_{i=1}^{r} \lambda_{i} k_{i}
$$

- For pairs $x_{i}, y_{i}: \operatorname{span}\left\{x_{i}+y_{i}\right\} \subseteq \operatorname{span}\left\{k_{j}\right\}$.
- First observation: span $\left\{x_{i}+y_{i}\right\} \subseteq \operatorname{span}\left\{k_{j}\right\}$
- Leads to a simple distinguishing attack, if number of rounds $r<n$.

Generic Analysis
 On the number of rounds

Observation

- The ciphertext is the plaintext plus a subset of the round keys:

$$
y=x+\sum_{i=1}^{r} \lambda_{i} k_{i}
$$

- For pairs $x_{i}, y_{i}: \operatorname{span}\left\{x_{i}+y_{i}\right\} \subseteq \operatorname{span}\left\{k_{j}\right\}$.

Distinguishing Attack for $r<n$ rounds
There is an $u \in \mathbb{F}_{2}^{n} \backslash\{0\}$, s. t. $\langle u, x\rangle=\langle u, y\rangle$ holds always:

$$
\begin{gathered}
\langle u, y\rangle=\left\langle u, x+\sum \lambda_{i} k_{i}\right\rangle \\
=\langle u, x\rangle+\left\langle u, \sum \lambda_{i} k_{i}\right\rangle=\langle u, x\rangle+0
\end{gathered}
$$

for all $u \in \operatorname{span}\left\{k_{1}, \ldots, k_{r}\right\}^{\perp} \neq\{0\}$

BISON Instantiating the Whitened Swap-Or-Not

Construction

Genenici Anaysis

- First observation: $\operatorname{span}\left\{x_{i}+y_{i}\right\} \subseteq \operatorname{span}\left\{k_{j}\right\}$
- Leads to a simple distinguishing attack, if number of rounds $r<n$.
- It is easy to find a u, s.t. $\langle u, y\rangle=\langle u, x\rangle=0$ for all $x, y=x, E(x)$.
- Simply use the bilinearity of the scalar product.
- Then any u from the dual space spanned by the round keys fullfills the above equation.
- As long as there are less then n round keys, this dual space has dimension greater or equal then one.

Generic Analysis
 On the number of rounds

```
RUB
```


Observation

- The ciphertext is the plaintext plus a subset of the round keys:

$$
y=x+\sum_{i=1}^{r} \lambda_{i} k_{i}
$$

- For pairs $x_{i}, y_{i}: \operatorname{span}\left\{x_{i}+y_{i}\right\} \subseteq \operatorname{span}\left\{k_{j}\right\}$.

Distinguishing Attack for $r<n$ rounds
There is an $u \in \mathbb{F}_{2}^{n} \backslash\{0\}$, s. t. $\langle u, x\rangle=\langle u, y\rangle$ holds always:

$$
\begin{gathered}
\langle u, y\rangle=\left\langle u, x+\sum \lambda_{i} k_{i}\right\rangle \\
=\langle u, x\rangle+\left\langle u, \sum \lambda_{i} k_{i}\right\rangle=\langle u, x\rangle+0
\end{gathered}
$$

for all $u \in \operatorname{span}\left\{k_{1}, \ldots, k_{r}\right\}^{\perp} \neq\{0\}$

BISON Instantiating the Whitened Swap-Or-Not

Construction

) -Generic Analysis
त्त

LGeneric Analysis

- First observation: span $\left\{x_{i}+y_{i}\right\} \subseteq \operatorname{span}\left\{k_{j}\right\}$
- Leads to a simple distinguishing attack, if number of rounds $r<n$.
- It is easy to find a u, s. t. $\langle u, y\rangle=\langle u, x\rangle=0$ for all $x, y=x, E(x)$.
- Simply use the bilinearity of the scalar product.
- Then any u from the dual space spanned by the round keys fullfills the above equation.
- As long as there are less then n round keys, this dual space has dimension greater or equal then one.
- A first design rational is thus. .

Generic Anyys

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

BISON Instantiating the Whitened Swap-Or-Not

A bit out of the clear blue sky, but:

Rationale 2

For any instance, f_{k} has to depend on all bits, and for any $\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right] \approx \frac{1}{2}$.

Genemicicnalysis

- We also need this second rationale.
- Its not so easy explainable without going into more depth
- So you have to believe me on this one.
- It basically says that for any input difference $\delta \neq k$:

$$
\operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right] \approx \frac{1}{2}
$$

Runeruwesestrix eocaum A genus of the WSN family: BISON

BISON Instantiating the Whitened Swap-Or-Not

Rationale 1
Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Rationale 2

For any instance, f_{k} has to depend on all bits, and for any $\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right] \approx \frac{1}{2}$.
Generic properties of Bent whltened Swap Or Not (BISON)

- At least n iterations of the round function - The round function depends on all bits
- Consecutive round keys linearly independent $\quad \forall \delta: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right]=\frac{1}{2}$ (bent)

Rüre unvessrix eocoum A genus of the WSN family: BISON

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Rationale 2

For any instance, f_{k} has to depend on all bits, and for any $\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right] \approx \frac{1}{2}$.
Generic properties of Bent whltened Swap Or Not (BISON)

- At least n iterations of the round function
- The round function depends on all bits
- Consecutive round keys linearly independent

■ $\forall \delta: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right]=\frac{1}{2}$ (bent)

The advantage?
Rational 1 \& 2: WSN is slow in practice!
Differential Cryptanalysis!

BISON Instantiating the Whitened Swap-Or-Not

Construction

-Generic Analysis
त्रे

- A quick recap and implications for any WSN instance.
- Rationale 2 basically tells us, we have to use bent functions.
- Thats nice, as those functions are quite well understood and already well scrutinised.
- Also, this is the reason for the name: Bent Whitened Swap-Or-Not
- But, and thats not so nice...
- n iterations of a round function that depends on all bits will be slow
- Let me repeat this (Reviewer 2 argued that we should optimise more): No matter how good we will optimise this: it will be slow
- For example, assume you can do one round in one clock cycle, this is still an order of magnitude slower than AES.
- So, why should we care about any instance?
- All hope is not lost, let's have a look at differential cryptanalysis!

Differential Cryptanalysis

高

BISON Instantiating the Whitened Swap-Or-Not Construction ஸ. LDifferential Analysis
$\square_{\text {Differential Cryptanalysis }}$

- For differential cryptanalysis, interested in propagation of input difference α to output difference β.
- Doing this in general at this abstraction level is a very hard problem.

BISON Instantiatina the Whitened Swan-Or-Not
Construction
ถ LDifferential Analysis
-Differential Cryptanalysis

- For differential cryptanalysis, interested in propagation of input difference α to output difference β.
- Doing this in general at this abstraction level is a very hard problem.
- To say anything, we usually look for single so called trails through the inner building blocks

$$
\begin{aligned}
& \operatorname{Pr}\left[\alpha \xrightarrow{E_{k}} \beta\right]=? \\
& p_{\theta}=\operatorname{Pr}\left[\theta_{0} \xrightarrow{R} \theta_{1} \xrightarrow{R} \cdots \xrightarrow{R} \theta_{r}\right] \\
& \\
& =\prod_{i=0}^{r-1} \operatorname{Pr}\left[\theta_{i} \xrightarrow{R} \theta_{i+1}\right]
\end{aligned}
$$

BISON Instantiating the Whitened Swap-Or-Not
∞ Construction
—Differential Analysis
-Differential Cryptanalysis

- For differential cryptanalysis, interested in propagation of input difference α to output difference β.
- Doing this in general at this abstraction level is a very hard problem.
- To say anything, we usually look for single so called trails through the inner building blocks.
- Now, computing the probability of one such trail is actually doable
- But, trails can go several alternative ways through non-linear parts, thus we have to cope with a branching effect.

BISON Instantiating the Whitened Swap-Or-Not

Construction

—Differential Analysis

$$
\operatorname{Pr}\left[\alpha \xrightarrow{E_{k}} \beta\right]=?
$$

$$
\begin{aligned}
p_{\theta} & =\operatorname{Pr}\left[\theta_{0} \xrightarrow{R} \theta_{1} \xrightarrow{R} \cdots \xrightarrow{R} \theta_{r}\right] \\
& =\prod_{i=0}^{r-1} \operatorname{Pr}\left[\theta_{i} \xrightarrow{R} \theta_{i+1}\right]
\end{aligned}
$$

- For differential cryptanalysis, interested in propagation of input difference α to output difference β
- Doing this in general at this abstraction level is a very hard problem.
- To say anything, we usually look for single so called trails through the inner building blocks.
- Now, computing the probability of one such trail is actually doable
- But, trails can go several alternative ways through non-linear parts, thus we have to cope with a branching effect..
- And eventually, several of these trails cluster in a so called differential.

$$
\operatorname{Pr}\left[\alpha \xrightarrow{E_{k}} \beta\right]=\sum_{\theta} p_{\theta}
$$

- While in this example it is still feasible, computing the exact probability in a real cipher is not.
- We thus have to restrain on bounding or approximating this probability.
- In the end, tight bounds for differentials over several rounds remain an open (but important!) problem.

BISON Instantiating the Whitened Swap-Or-Not
Construction

$$
\operatorname{Pr}_{x}[\alpha \rightarrow \beta]= \begin{cases}1 & \text { if } \alpha=\beta=k \text { or } \alpha=\beta=0 \\ \frac{1}{2} & \text { else if } \beta \in\{\alpha, \alpha+k\} \\ 0 & \text { else }\end{cases}
$$

- We start by understanding the differential one round behaviour.
- For the three possible cases, let us look at what differences are actually possible.

Differential Cryptanalysis

BISON Instantiating the Whitened Swap-Or-Not
Construction
Construction

Possible differences

$$
\begin{aligned}
& x+f_{k}(x) \quad \cdot f_{k}(x+\alpha) \cdot k \\
& \oplus x+\alpha+\left(f_{k}(x)+f_{k}(x+\alpha)\right) \cdot k \\
& =\quad \alpha+
\end{aligned}
$$

Properties of f_{k}

$$
\begin{equation*}
f_{k}(x)=f_{k}(x+k) \tag{1}
\end{equation*}
$$

- We start by understanding the differential one round behaviour.
- For the three possible cases, let us look at what differences are actually possible.
- Remember that one round computes the output as $x+f_{k}(x) \cdot k$.
- With the input difference α we get as possible output differences $\beta \in\{0, \alpha, k, \alpha+k\}$.
- For decryption we need that x and $x+k$ are mapped to the same value by f_{k}
- Thus, $\beta=\alpha$ with probability one, if and only if $\alpha=k$ or $\alpha=0$
- If β is not one of the above four values, such an input/output pair cannot occur, thus the probability is zero.

Differential Cryptanalysis

BISON Instantiating the Whitened Swap-Or-Not
Construction

For one round of BISON the probabilities are:

$$
\operatorname{Pr}_{x}[\alpha \rightarrow \beta]= \begin{cases}1 & \text { if } \alpha=\beta=k \text { or } \alpha=\beta=0 \\ \frac{1}{2} & \text { else if } \beta \in\{\alpha, \alpha+k\} \\ 0 & \text { else }\end{cases}
$$

Possible differences

$$
\begin{aligned}
& \quad \begin{array}{l}
x \\
+f_{k}(x) \\
\oplus x+\alpha \\
=\quad \alpha+\left(f_{k}(x)+f_{k}(x+\alpha) \cdot k\right. \\
=\quad+f_{k}(x) \cdot k
\end{array}
\end{aligned}
$$

Properties of f_{k}

$$
\begin{gathered}
f_{k}(x)=f_{k}(x+k) \\
\operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\alpha)\right]=\frac{1}{2}
\end{gathered}
$$

- We start by understanding the differential one round behaviour.
- For the three possible cases, let us look at what differences are actually possible.
- Remember that one round computes the output as $x+f_{k}(x) \cdot k$.
- With the input difference α we get as possible output differences $\beta \in\{0, \alpha, k, \alpha+k\}$.
- For decryption we need that x and $x+k$ are mapped to the same value by f_{k}
- Thus, $\beta=\alpha$ with probability one, if and only if $\alpha=k$ or $\alpha=0$
- If β is not one of the above four values, such an input/output pair cannot occur, thus the probability is zero.
- For the last case, remember that for any input difference, we required that f_{k} collides with probability one half.

BISON Instantiating the Whitened Swap-Or-Not

Example differences over $r=3$ rounds $\left(\alpha=k_{1}+k_{2}\right)$:

Construction
ம่ Lifferential Analysis
—Differential Cryptanalysis

- When we look at more rounds, we can depict these cases again in this tree structure.
- Starting with the input difference α, choosing an input value x determines the path we take through the tree.
- Now assuming that $\alpha=k_{1}+k_{2}$ it can not happen that the differential characteristic takes twice the right branch
- This would result in a zero difference, which is not possible for permutations as long as the input difference is non-zero.

Differential Cryptanalysis

More rounds
BISON Instantiating the Whitened Swap-Or-Not

Example differences over $r=3$ rounds $\left(\alpha=k_{1}+k_{2}\right)$:

Construction

Theorem (Differentials in BISON)

Let $\alpha, \beta \in \mathbb{F}_{2}^{n}$. Then the probability for the differential $\alpha \rightarrow \beta$ is $\operatorname{Pr}[\alpha \rightarrow \beta]=\sum_{\theta} p_{\theta}=p_{\left(\alpha, \theta_{1}, \ldots, \theta_{r-1}, \beta\right)}$.
-Differential Analysis
-Differential Cryptanalysis

- When we look at more rounds, we can depict these cases again in this tree structure.
- Starting with the input difference α, choosing an input value x determines the path we take through the tree.
- Now assuming that $\alpha=k_{1}+k_{2}$ it can not happen that the differential characteristic takes twice the right branch.
- This would result in a zero difference, which is not possible for permutations as long as the input difference is non-zero.
- Regarding differentials, the important observation is:
- For any input/output pair (α, β), there is only one path.
- In other words: no branching occurs and the differential consists of a single trail only.

BISON Instantiating the Whitened Swap-Or-Not
Construction

- Up to now we do not have specified much more then the initial WSN construction had.
- For a concrete implementation, we still need to define
- Number of rounds
- Key Schedule
- Boolean function f_{k}
- So let us look at a concrete BISON species
- In particular, we discuss how to tackle Rationales 1 and 2 .

Addressing Rationale 1

RUB
BISON Instantiating the Whitened Swap-Or-Not
Construction
-The concrete Instance

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Design Decisions

Implications

- Choose number of rounds as $3 \cdot n$
- Round keys derived from the state of LFSRs

■ Add round constants c_{i} to w_{i} round keys

- Clocking an LFSR is cheap
- For an LFSR with irreducible feedback polynomial of degree n, every n consecutive states are linearly independent
- Round constants avoid structural weaknesses

Addressing Rationale 2
The Round Function
Rationale 2
For any instance, the f_{k} should depend on all bits, and for any $\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right] \approx \frac{1}{2}$.

Design Decisions
 - Choose $f_{k}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ s.t.
 $\delta \in \mathbb{F}_{2}^{n}: \operatorname{Pr}\left[f_{k}(x)=f_{k}(x+\delta)\right]=\frac{1}{2}$,

Implications

- Bent functions well studied
- Bent functions only exists for even n
that is, f_{k} is a bent function.
- Instance not possible for every block

■ Choose the simplest bent function known:

$$
f_{k}(x, y):=\langle x, y\rangle
$$

- Just chose the simplest bent function, the scalar product.
- This is also efficiently implementable.
- But, another drawback:
- Bent functions exists only for even n.
- Thus BISON cannot be instantiated for every block length n
- In particular, due to reasons not covered here, we can actually only instantiate it for odd block lengths.

BISON Instantiating the Whitened Swap-Or-Not
Construction
-The concrete Instance
Adaressing Pationale e त्ते

Rupar unvestrix ieacum An Implementation

BISON Instantiating the Whitened Swap-Or-Not完 LThe concrete Instance

- $f_{k}(x):=$?
- Key schedule?
- $\Theta(n)$ rounds?

- Coming back to our initial question.
- And basically only for the sake of completeness, as we already saw this is going to be slow.

Rupreuwessuriteoaum An Implementation

BISON Instantiating the Whitened Swap-Or-Not

Construction

- $f_{k}(x, y):=\langle x, y\rangle$
- Key schedule: LFSRs.
- $\Theta(n)=3 n$ rounds.

Cipher	Block size (bit)	Cycles/Byte mean
AES*	128	0.65
BISON †	129	3064.08

* AES-128 on Skylake Intel $®$ Core i7-7800X @ 3.5GHz, see Daemen et al. [The design of Xoodoo and Xoofff, Table 5] † BISON on CoffeeLake Intel $®$ Core i7-8700 @ 3.7 GHz .
- Coming back to our initial question.
- And basically only for the sake of completeness, as we already saw this is going to be slow.
- We have specified everything, so let's benchmark against AES (what else).
- OK, told you so, BISON is like 4700 times slower than AES.
- Or: more than three orders of magnitude.
- Optimising this will not help enough.

BISON Instantiating the Whitened Swap-Or-Not

Linear Cryptanalysis

For $r \geqslant n$ rounds, the correlation of any non-trivial linear trail for BISON is upper bounded by $2^{-\frac{n+1}{2}}$.

Zero Correlation

For $r>2 n-2$ rounds, BISON does not exhibit any zero correlation linear hulls.

Invariant Attacks

For $r \geqslant n$ rounds, neither invariant subspaces nor nonlinear invariant attacks do exist for BISON.

Impossible Differentials
For $r>n$ rounds, there are no impossible differentials for BISON.

Construction
© - Further Analysis
高
$\left\llcorner_{\text {Further Cryptanalysis }}\right.$

- We did more cryptanalysis, but our results are more of the "classical" kind.
- For linear cryptanalysis, we bound the correlation of any non-trivial trail.
- Current known security arguments for resistance against invariant attacks apply.
- Zero correlation and impossible differentials do not exist for $2 n$ rounds or more.
- Best attacks seem to exploit the algebraic degree.
- We show that it grows only linearly - which is especially bad in comparison to SPN ciphers.
- The result on the algebraic degree also applies to NLFSRs or maximally unbalanced Feistel networks.
- Conservative estimation: might work for more than $2 n$ rounds, but not for $3 n$ or more.

Algebraic Degree and Division Property
Algebraic degree grows linearly. Conservative estimate: for $r \geqslant 3 n$ rounds, no attack possible.

BISON Instantiating the Whitened Swap-Or-Not

Construction

Conclusionguastions

BISON
 - A first instance of the WSN construction

 - Good results for differential cryptanalysis
Open Problems

- Construction for linear cryptanalysis?
- Similar args. for Unbalanced Feistel?

Details

BISON's round function
For round keys $k_{i} \in \mathbb{F}_{2}^{n}$ and $w_{i} \in \mathbb{F}_{2}^{n-1}$ the round function computes

$$
R_{k_{i}, w_{i}}(x):=x+f_{b(i)}\left(w_{i}+\Phi_{k_{i}}(x)\right) \cdot k_{i}
$$

where

- $\Phi_{k_{i}}$ and $f_{b(i)}$ are defined as
$\Phi_{k}(x): \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n-1}$ $\Phi_{k}(x):=(x+x[i(k)] \cdot k)[j]_{\substack{1 \leq j \leqslant n \\ j \neq i(k)}}$

$$
\begin{aligned}
f_{b(i)}: \mathbb{F}_{2}^{\frac{n-1}{2}} \times \mathbb{F}_{2}^{\frac{n-1}{2}} & \rightarrow \mathbb{F}_{2} \\
f_{b(i)}(x, y): & =\langle x, y\rangle+b(i),
\end{aligned}
$$

- and $b(i)$ is 0 if $i \leqslant \frac{r}{2}$ and 1 else.

BISON's key schedule

Given

```
- primitive \(p_{k}, p_{w} \in \mathbb{F}_{2}[x]\) with degrees \(n, n-1\) and companion matrices \(C_{k}, C_{w}\). ■ master key \(K=(k, w) \in\left(\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n-1}\right) \backslash\{0,0\}\)
The \(i\) th round keys are computed by
\[
\begin{aligned}
\mathrm{KS}_{i}: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n-1} & \rightarrow \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n-1} \\
& \mathrm{KS}_{i}(k, w):
\end{aligned}=\left(k_{i}, c_{i}+w_{i}\right)
\]
where
\[
k_{i}=\left(C_{k}\right)^{i} k, \quad c_{i}=\left(C_{w}\right)^{-i} e_{1}, \quad w_{i}=\left(C_{w}\right)^{i} w
\]
```

BISON Instantiating the Whitened Swap-Or-Not

